
- •Лекция 1 Основы алгоритмизации
- •1.1 Языки программирования
- •1.2 Этапы решения задач на компьютере
- •1.3 Понятие алгоритма и его свойства
- •1.4 Графическое описание алгоритмов. Схемы алгоритмов
- •Блоки для изображения схем алгоритмов и программ
- •1.5 Типы алгоритмов
- •Лекция 2 Начальные сведения о языке
- •2.3 Компиляция и выполнение программы
- •Лекция 3 Имена, переменные и константы
- •3.1 Имена
- •3.2 Переменные
- •3.3 Константы
- •Лекция 4 Операции и выражения
- •4.1 Выражения
- •4.2 Операция присваивания
- •4.3.1 Арифметические операции
- •4.3.2 Операции сравнения
- •4.4 Порядок вычисления выражений
- •Лекция 5 Операторы
- •5.1 Что такое оператор
- •5.1.1 Операторы-выражения
- •5.1.2 Объявления имен
- •5.1.3 Операторы управления
- •5.1.3.1 Условные операторы
- •5.1.3.2 Операторы цикла
- •5.1.3.3 Оператор возврата
- •5.1.3.4 Оператор перехода
- •Лекция 6 Функции
- •6.1 Вызов функций
- •6.2 Имена функций
- •6.3 Необязательные аргументы функций
- •6.4 Рекурсия
- •Лекция 7 Встроенные типы данных
- •7.1 Общая информация
- •7.2 Целые числа
- •7.3 Вещественные числа
- •7.4 Логические величины
- •7.5 Символы и байты
- •7.6 Кодировка, многобайтовые символы
- •7.7 Наборы перечисляемых значений
- •Лекция 8 Классы и объекты
- •8.1 Понятие класса
- •8.2 Определение методов класса
- •8.3 Переопределение операций
- •8.4 Подписи методов и необязательные аргументы
- •8.4.1 Запись классов
- •Лекция 9 Производные типы данных
- •9.1 Массивы
- •9.2 Структуры
- •9.2.1 Битовые поля
- •9.3 Объединения
- •9.4 Указатели
- •9.4.1 Адресная арифметика
- •9.4.2 Связь между массивами и указателями
- •9.4.3 Бестиповый указатель
- •9.4.4 Нулевой указатель
- •9.5 Строки и литералы
- •Лекция 10 Распределение памяти
- •10.1 Автоматические переменные
- •10.2 Статические переменные
- •10.3 Динамическое выделение памяти
- •10.4 Выделение памяти под строки
- •10.5 Рекомендации по использованию указателей и динамического распределения памяти
- •10.6 Ссылки
- •10.6 Распределение памяти при передаче аргументов функции
- •10.6.1 Рекомендации по передаче аргументов
- •Лекция 11 Производные классы, наследование
- •11.1 Виртуальные методы
- •11.1.1 Виртуальные методы и переопределение методов
- •11.2 Преобразование базового и производного классов
- •11.3 Внутреннее и защищенное наследование
- •11.4 Абстрактные классы
- •11.5 Множественное наследование
- •11.5.1 Виртуальное наследование
- •15.2 Проблема использования общих функций и имен
- •15.3 Использование включаемых файлов
- •15.4 Препроцессор
- •15.4.1 Определение макросов
- •Условная компиляция
- •15.4.2 Дополнительные директивы препроцессора
- •Лекция 16 Определение, время жизни и области видимости переменных в больших программах
- •16.1 Файлы и переменные
- •16.1.1 Общие данные
- •16.1.2 Глобальные переменные
- •16.1.3 Повышение надежности обращения к общим данным
- •16.2 Область видимости имен
- •16.3 Оператор определения контекста namespace
- •Лекция 17 Обработка ошибок
- •17.1 Виды ошибок
- •17.2 Возвращаемое значение как признак ошибки
- •17.3 Исключительные ситуации
- •17.3.1 Обработка исключительных ситуаций
- •17.3.2 Примеры обработки исключительных ситуаций
- •Лекция 18 Bвод-вывод
- •18.1 Потоки
- •18.3 Манипуляторы и форматирование ввода-вывода
- •18.4 Строковые потоки
- •18.5 Ввод-вывод файлов
- •Лекция 19 Шаблоны
- •19.1 Назначение шаблонов
- •19.2 Функции-шаблоны
- •19.3 Шаблоны классов
- •19.3.1 "Интеллигентный указатель"
- •19.3.2 Задание свойств класса
- •Список использованных источников
- •Содержание
Лекция 19 Шаблоны
19.1 Назначение шаблонов
Алгоритм выполнения какого-либо действия можно записывать независимо от того, какого типа данные обрабатываются. Простейшим примером служит определение минимума из двух величин.
if (a < b)
x = a;
else
x = b;
Независимо от того, к какому именно типу принадлежат переменные a, b и x, если это один и тот же тип, для которого определена операция "меньше", запись будет одна и та же. Было бы естественно определить функцию min, возвращающую минимум из двух своих аргументов. Возникает вопрос, как описать аргументы этой функции? Конечно, можно определить min для всех известных типов, однако, во-первых, пришлось бы повторять одну и ту же запись многократно, а во-вторых, с добавлением новых классов добавлять новые функции.
Аналогичная ситуация встречается и в случае со многими сложными структурами данных. В классе, реализующем связанный список целых чисел, алгоритмы добавления нового атрибута списка, поиска нужного атрибута и так далее не зависят от того, что атрибуты списка – целые числа. Точно такие же алгоритмы нужно будет реализовать для списка вещественных чисел или указателей на класс Book.
Механизм шаблонов в языке Си++ позволяет эффективно решать многие подобные задачи.
19.2 Функции-шаблоны
Запишем алгоритм поиска минимума двух величин, где в качестве параметра используется тип этих величин.
template <class T>
const T& min(const T& a, const T& b)
{
if (a < b)
return a;
else
return b;
}
Данная запись еще не создала ни одной функции, это лишь шаблон для определенной функции. Только тогда, когда происходит обращение к функции с аргументами конкретного типа, будет выполнена генерация конкретной функции.
int x, y, z;
String s1, s2, s3;
. . .
// генерация функции min для класса String
s1 = min(s2, s3);
. . .
// генерация функции min для типа int
x = min(y, z);
Первое обращение к функции min генерирует функцию
const String& min(const String& a,
const String& b);
Второе обращение генерирует функцию
const int& min(const int& a,
const int& b);
Объявление шаблона функции min говорит о том, что конкретная функция зависит от одного параметра – типа T. Первое обращение к min в программе использует аргументы типа String. В шаблон функции подставляется тип String вместо T. Получается функция:
const String& min(const String& a,
const String& b)
{
if (a < b)
return a;
else
return b;
}
Эта функция компилируется и используется в программе. Аналогичные действия выполняются и при втором обращении, только теперь вместо параметра T подставляется тип int. Как видно из приведенных примеров, компилятор сам определяет, какую функцию надо использовать, и автоматически генерирует необходимое определение.
У функции-шаблона может быть несколько параметров. Так, например, функция find библиотеки STL (стандартной библиотеки шаблонов), которая ищет первый элемент, равный заданному, в интервале значений, имеет вид:
template <class InIterator, class T>
InIterator
find(InIterator first, InIterator last,
const T& val);
Класс T – это тип элементов интервала. Тип InIterator – тип указателя на его начало и конец.