
- •Лекция 1 Основы алгоритмизации
- •1.1 Языки программирования
- •1.2 Этапы решения задач на компьютере
- •1.3 Понятие алгоритма и его свойства
- •1.4 Графическое описание алгоритмов. Схемы алгоритмов
- •Блоки для изображения схем алгоритмов и программ
- •1.5 Типы алгоритмов
- •Лекция 2 Начальные сведения о языке
- •2.3 Компиляция и выполнение программы
- •Лекция 3 Имена, переменные и константы
- •3.1 Имена
- •3.2 Переменные
- •3.3 Константы
- •Лекция 4 Операции и выражения
- •4.1 Выражения
- •4.2 Операция присваивания
- •4.3.1 Арифметические операции
- •4.3.2 Операции сравнения
- •4.4 Порядок вычисления выражений
- •Лекция 5 Операторы
- •5.1 Что такое оператор
- •5.1.1 Операторы-выражения
- •5.1.2 Объявления имен
- •5.1.3 Операторы управления
- •5.1.3.1 Условные операторы
- •5.1.3.2 Операторы цикла
- •5.1.3.3 Оператор возврата
- •5.1.3.4 Оператор перехода
- •Лекция 6 Функции
- •6.1 Вызов функций
- •6.2 Имена функций
- •6.3 Необязательные аргументы функций
- •6.4 Рекурсия
- •Лекция 7 Встроенные типы данных
- •7.1 Общая информация
- •7.2 Целые числа
- •7.3 Вещественные числа
- •7.4 Логические величины
- •7.5 Символы и байты
- •7.6 Кодировка, многобайтовые символы
- •7.7 Наборы перечисляемых значений
- •Лекция 8 Классы и объекты
- •8.1 Понятие класса
- •8.2 Определение методов класса
- •8.3 Переопределение операций
- •8.4 Подписи методов и необязательные аргументы
- •8.4.1 Запись классов
- •Лекция 9 Производные типы данных
- •9.1 Массивы
- •9.2 Структуры
- •9.2.1 Битовые поля
- •9.3 Объединения
- •9.4 Указатели
- •9.4.1 Адресная арифметика
- •9.4.2 Связь между массивами и указателями
- •9.4.3 Бестиповый указатель
- •9.4.4 Нулевой указатель
- •9.5 Строки и литералы
- •Лекция 10 Распределение памяти
- •10.1 Автоматические переменные
- •10.2 Статические переменные
- •10.3 Динамическое выделение памяти
- •10.4 Выделение памяти под строки
- •10.5 Рекомендации по использованию указателей и динамического распределения памяти
- •10.6 Ссылки
- •10.6 Распределение памяти при передаче аргументов функции
- •10.6.1 Рекомендации по передаче аргументов
- •Лекция 11 Производные классы, наследование
- •11.1 Виртуальные методы
- •11.1.1 Виртуальные методы и переопределение методов
- •11.2 Преобразование базового и производного классов
- •11.3 Внутреннее и защищенное наследование
- •11.4 Абстрактные классы
- •11.5 Множественное наследование
- •11.5.1 Виртуальное наследование
- •15.2 Проблема использования общих функций и имен
- •15.3 Использование включаемых файлов
- •15.4 Препроцессор
- •15.4.1 Определение макросов
- •Условная компиляция
- •15.4.2 Дополнительные директивы препроцессора
- •Лекция 16 Определение, время жизни и области видимости переменных в больших программах
- •16.1 Файлы и переменные
- •16.1.1 Общие данные
- •16.1.2 Глобальные переменные
- •16.1.3 Повышение надежности обращения к общим данным
- •16.2 Область видимости имен
- •16.3 Оператор определения контекста namespace
- •Лекция 17 Обработка ошибок
- •17.1 Виды ошибок
- •17.2 Возвращаемое значение как признак ошибки
- •17.3 Исключительные ситуации
- •17.3.1 Обработка исключительных ситуаций
- •17.3.2 Примеры обработки исключительных ситуаций
- •Лекция 18 Bвод-вывод
- •18.1 Потоки
- •18.3 Манипуляторы и форматирование ввода-вывода
- •18.4 Строковые потоки
- •18.5 Ввод-вывод файлов
- •Лекция 19 Шаблоны
- •19.1 Назначение шаблонов
- •19.2 Функции-шаблоны
- •19.3 Шаблоны классов
- •19.3.1 "Интеллигентный указатель"
- •19.3.2 Задание свойств класса
- •Список использованных источников
- •Содержание
18.3 Манипуляторы и форматирование ввода-вывода
Часто бывает необходимо вывести строку или число в определенном формате. Для этого используются так называемые манипуляторы.
Манипуляторы – это объекты особых типов, которые управляют тем, как ostream или istream обрабатывают последующие аргументы. Некоторые манипуляторы могут также выводить или вводить специальные символы.
С одним манипулятором мы уже сталкивались, это endl. Он вызывает вывод символа новой строки. Другие манипуляторы позволяют задавать формат вывода чисел:
endl |
при выводе перейти на новую строку; |
ends |
вывести нулевой байт (признак конца строки символов); |
flush |
немедленно вывести и опустошить все промежуточные буферы; |
dec |
выводить числа в десятичной системе (действует по умолчанию); |
oct |
выводить числа в восьмеричной системе; |
hex |
выводить числа в шестнадцатеричной системе счисления; |
setw (int n) |
установить ширину поля вывода в n символов (n – целое число); |
setfill(int n) |
установить символ-заполнитель; этим символом выводимое значение будет дополняться до необходимой ширины; |
setprecision(int n) |
установить количество цифр после запятой при выводе вещественных чисел; |
setbase(int n) |
установить систему счисления для вывода чисел; n может принимать значения 0, 2, 8, 10, 16, причем 0 означает систему счисления по умолчанию, т.е. 10. |
Использовать манипуляторы просто – их надо вывести в выходной поток. Предположим, мы хотим вывести одно и то же число в разных системах счисления:
int x = 53;
cout << "Десятичный вид: " << dec
<< x << endl
<< "Восьмеричный вид: " << oct
<< x << endl
<< "Шестнадцатеричный вид: " << hex
<< x << endl
Аналогично используются манипуляторы с параметрами. Вывод числа с разным количеством цифр после запятой:
double x;
// вывести число в поле общей шириной
// 6 символов (3 цифры до запятой,
// десятичная точка и 2 цифры после запятой)
cout << setw(6) << setprecision(2)
<< x << endl;
Те же манипуляторы (за исключением endl и ends могут использоваться и при вводе. В этом случае они описывают представление вводимых чисел. Кроме того, имеется манипулятор, работающий только при вводе, это ws. Данный манипулятор переключает вводимый поток в такой режим, при котором все пробелы (включая табуляцию, переводы строки, переводы каретки и переводы страницы) будут вводиться. По умолчанию эти символы воспринимаются как разделители между атрибутами ввода.
int x;
// ввести шестнадцатеричное число
cin >> hex >> x;
18.4 Строковые потоки
Специальным случаем потоков являются строковые потоки, представленные классом strstream. Отличие этих потоков состоит в том, что все операции происходят в памяти. Фактически такие потоки формируют форматированную строку символов, заканчивающуюся нулевым байтом. Строковые потоки применяются, прежде всего, для того, чтобы облегчить форматирование данных в памяти.
Например, в приведенном в предыдущей главе классе Exception для исключительной ситуации можно добавить сообщение. Если мы хотим составить сообщение из нескольких частей, то может возникнуть необходимость форматирования этого сообщения:
// произошла ошибка
strstream ss;
ss << "Ошибка ввода-вывода, регистр: "
<< oct << reg1;
ss << "Системная ошибка номер: " << dec
<< errno << ends;
String msg(ss.str());
ss.rdbuf()->freeze(0);
Exception ex(Exception::INTERNAL_ERROR, msg);
throw ex;
Сначала создается объект типа strstream с именем ss. Затем в созданный строковый поток выводятся сформатированные нужным образом данные. Отметим, что в конце мы вывели манипулятор ends, который добавил необходимый для символьной строки байтов нулевой байт. Метод str() класса strstream предоставляет доступ к сформатированной строке (тип его возвращаемого значения – char*). Следующая строка освобождает память, занимаемую строковым потоком (подробнее об этом рассказано ниже). Последние две строки создают объект типа Exception с типом ошибки INTERNAL_ERROR и сформированным сообщением и вызывают исключительную ситуацию.
Важное свойство класса strstream состоит в том, что он автоматически выделяет нужное количество памяти для хранения строк. В следующем примере функция split_numbers выделяет числа из строки, состоящей из нескольких чисел, разделенных пробелом, и печатает их по одному на строке.
#include <strstream.h>
void
split_numbers(const char* s)
{
strstream iostr;
iostr << s << ends;
int x;
while (iostr >> x)
cout << x<< endl;
}
int
main()
{
split_numbers("123 34 56 932");
return 1;
}
Замечание. В среде Visual C++ файл заголовков называется strstream.h.
Как видно из этого примера, независимо от того, какова на самом деле длина входной строки, объект iostr автоматически выделяет память, и при выходе из функции split_numbers, когда объект уничтожается, память будет освобождена.
Однако из данного правила есть одно исключение. Если программа обращается непосредственно к хранимой в объекте строке с помощью метода str (), то объект перестает контролировать эту память, а это означает, что при уничтожении объекта память не будет освобождена. Для того чтобы память все-таки была освобождена, необходимо вызвать метод rdbuf()->freeze(0) (см. предыдущий пример).