
- •Лекция 1 Основы алгоритмизации
- •1.1 Языки программирования
- •1.2 Этапы решения задач на компьютере
- •1.3 Понятие алгоритма и его свойства
- •1.4 Графическое описание алгоритмов. Схемы алгоритмов
- •Блоки для изображения схем алгоритмов и программ
- •1.5 Типы алгоритмов
- •Лекция 2 Начальные сведения о языке
- •2.3 Компиляция и выполнение программы
- •Лекция 3 Имена, переменные и константы
- •3.1 Имена
- •3.2 Переменные
- •3.3 Константы
- •Лекция 4 Операции и выражения
- •4.1 Выражения
- •4.2 Операция присваивания
- •4.3.1 Арифметические операции
- •4.3.2 Операции сравнения
- •4.4 Порядок вычисления выражений
- •Лекция 5 Операторы
- •5.1 Что такое оператор
- •5.1.1 Операторы-выражения
- •5.1.2 Объявления имен
- •5.1.3 Операторы управления
- •5.1.3.1 Условные операторы
- •5.1.3.2 Операторы цикла
- •5.1.3.3 Оператор возврата
- •5.1.3.4 Оператор перехода
- •Лекция 6 Функции
- •6.1 Вызов функций
- •6.2 Имена функций
- •6.3 Необязательные аргументы функций
- •6.4 Рекурсия
- •Лекция 7 Встроенные типы данных
- •7.1 Общая информация
- •7.2 Целые числа
- •7.3 Вещественные числа
- •7.4 Логические величины
- •7.5 Символы и байты
- •7.6 Кодировка, многобайтовые символы
- •7.7 Наборы перечисляемых значений
- •Лекция 8 Классы и объекты
- •8.1 Понятие класса
- •8.2 Определение методов класса
- •8.3 Переопределение операций
- •8.4 Подписи методов и необязательные аргументы
- •8.4.1 Запись классов
- •Лекция 9 Производные типы данных
- •9.1 Массивы
- •9.2 Структуры
- •9.2.1 Битовые поля
- •9.3 Объединения
- •9.4 Указатели
- •9.4.1 Адресная арифметика
- •9.4.2 Связь между массивами и указателями
- •9.4.3 Бестиповый указатель
- •9.4.4 Нулевой указатель
- •9.5 Строки и литералы
- •Лекция 10 Распределение памяти
- •10.1 Автоматические переменные
- •10.2 Статические переменные
- •10.3 Динамическое выделение памяти
- •10.4 Выделение памяти под строки
- •10.5 Рекомендации по использованию указателей и динамического распределения памяти
- •10.6 Ссылки
- •10.6 Распределение памяти при передаче аргументов функции
- •10.6.1 Рекомендации по передаче аргументов
- •Лекция 11 Производные классы, наследование
- •11.1 Виртуальные методы
- •11.1.1 Виртуальные методы и переопределение методов
- •11.2 Преобразование базового и производного классов
- •11.3 Внутреннее и защищенное наследование
- •11.4 Абстрактные классы
- •11.5 Множественное наследование
- •11.5.1 Виртуальное наследование
- •15.2 Проблема использования общих функций и имен
- •15.3 Использование включаемых файлов
- •15.4 Препроцессор
- •15.4.1 Определение макросов
- •Условная компиляция
- •15.4.2 Дополнительные директивы препроцессора
- •Лекция 16 Определение, время жизни и области видимости переменных в больших программах
- •16.1 Файлы и переменные
- •16.1.1 Общие данные
- •16.1.2 Глобальные переменные
- •16.1.3 Повышение надежности обращения к общим данным
- •16.2 Область видимости имен
- •16.3 Оператор определения контекста namespace
- •Лекция 17 Обработка ошибок
- •17.1 Виды ошибок
- •17.2 Возвращаемое значение как признак ошибки
- •17.3 Исключительные ситуации
- •17.3.1 Обработка исключительных ситуаций
- •17.3.2 Примеры обработки исключительных ситуаций
- •Лекция 18 Bвод-вывод
- •18.1 Потоки
- •18.3 Манипуляторы и форматирование ввода-вывода
- •18.4 Строковые потоки
- •18.5 Ввод-вывод файлов
- •Лекция 19 Шаблоны
- •19.1 Назначение шаблонов
- •19.2 Функции-шаблоны
- •19.3 Шаблоны классов
- •19.3.1 "Интеллигентный указатель"
- •19.3.2 Задание свойств класса
- •Список использованных источников
- •Содержание
7.3 Вещественные числа
Вещественные числа в C++ могут быть одного из трех типов: с одинарной точностью — float , с двойной точностью – double , и с расширенной точностью – long double.
float x;
double e = 2.9;
long double s;
В большинстве реализаций языка представление и диапазоны значений соответствуют стандарту IEEE (Institute of Electrical and Electronics Engineers) для представления вещественных чисел. Точность представления чисел составляет 7 десятичных значащих цифр для типа float , 15 значащих цифр для double и 19 — для типа long double .
Вещественные числа записываются либо в виде десятичных дробей, например 1.3, 3.1415, 0.0005, либо в виде мантиссы и экспоненты: 1.2E0, 0.12e1. Отметим, что обе предыдущие записи изображают одно и то же число 1.2.
По умолчанию вещественная константа принадлежит к типу double . Чтобы обозначить, что константа на самом деле float , нужно добавить символ f или F после числа: 2.7f. Символ l или L означает, что записанное число относится к типу long double .
const float pi_f = 3.14f;
double pi_d = 3.1415;
long double pi_l = 3.1415L;
Для вещественных чисел определены все стандартные арифметические операции сложения (+), вычитания (-), умножения (*), деления (/) и изменения знака (-). В отличие от целых чисел, операция нахождения остатка от деления для вещественных чисел не определена. Аналогично, все битовые операции и сдвиги к вещественным числам неприменимы; они работают только с целыми числами. Примеры операций:
2 * pi;
(x – e) / 4.0
Вещественные числа можно сравнивать на равенство (==), неравенство (!=), больше (>), меньше (<), больше или равно (>=) и меньше или равно (<=). В результате операции сравнения получается логическое значение истина или ложь.
Если арифметическая операция применяется к двум вещественным числам разных типов, то менее точное число преобразуется в более точное, т.е. float преобразуется в double и double преобразуется в long double . Очевидно, что такое преобразование всегда можно выполнить без потери точности.
Если вторым операндом в операции с вещественным числом является целое число, то целое число преобразуется в вещественное представление.
Хотя любую целую величину можно представить в виде вещественного числа, при таком преобразовании возможна потеря точности (для больших чисел).
7.4 Логические величины
В языке C++ существует специальный тип для представления логических значений bool . Для величин этого типа существует только два возможных значения: true (истина) и false (ложь). Объявление логической переменной выглядит следующим образом:
bool condition;
Соответственно, существуют только две логические константы – истина и ложь. Они обозначаются, соответственно, true и false .
Для типа bool определены стандартные логические операции: логическое И (&&), ИЛИ (||) и НЕ (!).
// истинно, если обе переменные,
// cond1 и cond2, истинны
cond1 && cond2
// истинно, если хотя бы одна из переменных
// истинна
cond1 || cond2
// результат противоположен значению cond1
!cond1
Как мы уже отмечали ранее, логические значения получаются в результате операций сравнения. Кроме того, в языке C++ принято следующее правило преобразования чисел в логические значения: ноль соответствует значению false , и любое отличное от нуля число преобразуется в значение true . Поэтому можно записать, например:
int k = 100;
while (k) { // выполнить цикл 100 раз
k--;
}