- •21)Теорема об изменении главного момента количества движения системы (кинетического момент системы). Закон сохранения кинетического момента.
- •23. Основные понятия сопротивления материалов. Расчетная схема. Закон Гука. Принципы независимости действия сил и Сен-Веиана.
- •24.Метод сечений. Внутренние силовые факторы в поперечном сечении стержня.
- •25)Понятия о напряжениях, перемещениях и деформациях.
- •26.Растяжение и сжатие стержней. Продольные силы и нормальные напряжения при растяжении-сжатии.
- •27.Удлинения стержня и закон Гука при растяжении и сжатии. Модуль Юнга. Температурные деформации.
- •29.Диаграммы растяжения и сжатия для пластичных материалов.
- •28.Напряженное и деформированное состояния при растяжении. Коэффициент Пуассона.
- •31.Условие прочности при растяжении-сжатии. Допускаемое (безопасное) напряжение. Нормативный и фактический коэффициент запаса прочности. Три вида расчетов на прочность при растяжении-сжатии.
- •32.Чистый сдвиг. Напряжения и деформации при чистом сдвиге. Закон Гука при сдвиге.
- •33.Кручение стержня с круглым поперечным сечением. Напряжения в поперечных сечениях. Угол закручивания.
- •34.Условия прочности и жесткости при кручении. Три вида расчетов на прочность при кручении.
- •35.Геометрические характеристики поперечных сечений. Статические моменты и центр тяжести сечения.
- •10.2 Моменты инерции сечения
- •36.Моменты инерции сечения. Главные оси и главные моменты инерции.
- •37.Понятие о чистом и поперечном изгибе. Внутренние силовые факторы при изгибе. Построение эпюр поперечных сил и изгибающих моментов.
- •38.Дифференциальные зависимости между изгибающим моментом, поперечной силой и и нтенсивностью распределенной нагрузки.
- •39)Напряжения при чистом изгибе. Условие прочности при чистом изгибе.
- •40)Напряжения и расчеты на прочность при поперечном изгибе.
34.Условия прочности и жесткости при кручении. Три вида расчетов на прочность при кручении.
Условие прочности при кручении с учетом принятых обозначений формулируется следующим образом: максимальные касательные напряжения, возникающие в опасном сечении вала, не должны превышать допускаемых напряжений и записывается в виде
, (5.6)
где
берется
либо на основании опытных данных, либо
(при отсутствии нужных опытных
характеристик) по теориям прочности,
соответствующим материалу. Например,
из теорий прочности для хрупких
материалов, примененных для чистого
сдвига, следуют такие результаты:
- из второй теории прочности
; (5.7)
- из теории Мора
, (5.8)
где
.
Из теорий прочности для пластичных материалов при чистом сдвиге получим:
- по третьей теории прочности
, (5.9)
- по четвертой теории прочности
. (5.10)
Как
следует из закона парности касательных
напряжений, одновременно с касательными
напряжениями, действующими в плоскости
поперечного сечения вала, имеют место
касательные напряжения в продольных
плоскостях. Они равны по величине парным
напряжениям, но имеют противоположный
знак. Таким образом, все элементы бруса
при кручении находятся в состоянии
чистого сдвига. Так как чистый сдвиг
является частным случаем плоского
напряженного состояния, при котором
,
,
,
то при повороте граней элемента на
450 в
новых площадках обнаруживаются только
нормальные напряжения, равные по
величине
(рис.5.8).
Рассмотрим возможные виды разрушения валов, изготовленных из различных материалов при кручении. Валы из пластичных материалов чаще всего разрушаются по сечению, перпендикулярному к оси вала, под действием касательных напряжений, действующих в этом сечении (рис.5.9,а). Валы из хрупких материалов, разрушаются по винтовой поверхности наклоненной к оси вала под углом 450, т.е. по направлению действия максимальных растягивающих напряжений (рис.5.9,б). У деревянных валов первые трещины возникают по образующим цилиндра, так как древесина плохо сопротивляется действию касательных напряжений, направленных вдоль волокон (рис.5.9,в).
Рис.5.8 Рис.5.9
Таким
образом, характер разрушения зависит
от способности материала вала
сопротивляться воздействию нормальных
и касательных напряжений. В соответствии
с этим, допускаемые касательные
напряжения принимаются равным
-
для хрупких материалов и
-
для пластичных материалов.Т.о., при
растяжении-сжатии условие прочности
(8.21) принимает вид
. (8.24)
Пользуясь этим условием, можно решать:
а) задачи проверочного расчета. Здесь по заданным нагрузке и размерам поперечного сечения стержня определяют фактические напряжения и сравнивают их с допускаемыми, т.е., непосредственно проверяют выполнение условия (8.24). Перенапряжение недопустимо с точки зрения обеспечения прочности, а недонапряжение ведет к перерасходу материала;
б) задачи проектного расчета. По известным нагрузке и допускаемому напряжению определяют размеры поперечных сечений стержней, требуемые по условию прочности
; (8.25)
в) задачи определения предельной грузоподъемности (несущей способности). Здесь по заданным размерам поперечного сечения стержня и известному допускаемому напряжению определяют допускаемую продольную силу
, (8.26)
после чего, установив связь между продольной силой и нагрузкой (с помощью уравнений статики), можно определить допускаемую нагрузку.
Следует иметь в виду, что сжатые стержни, кроме расчета на прочность, должны также рассчитываться на устойчивость, т.к. при определенном значении сжимающей силы может произойти выпучивание (потеря устойчивости) стержня.
Отметим также, что критерий прочности, принятый в методе допускаемых напряжений (напряжения в точке), не всегда характеризует условие наступления разрушения конструкции. В ряде случаев за такой критерий правильнее принимать предельную нагрузку, которую может выдержать система, не разрушаясь и не изменяя существенно свою форму.
