Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Монахов зачет.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
358.4 Кб
Скачать

21. Постановка гипотез. Критерий Хи-квадрат.

Гипотеза – это не вопрос и не проблема, а утверждение.

Для статистической проверки выбирают гипотезы, отражающие самую общую ситуацию.

Альтернативная гипотеза – противоположная проверяемой.

Нулевой, основной или проверяемой гипотезой называется первоначально выдвинутая гипотеза, которая обозначается Н0.

Конкурирующей или альтернативной гипотезой называется гипотеза, которая противоречит основной гипотезе Н0 и обозначается Н1.

В программе Excel имеется функция ХИ2РАСП для вычисления по значению χ2 вероятности того, что это или большее значение χ2 получится в эксперименте. Эта вероятность носит название уровня значимости и обычно обозначается буквой α. Функция ХИ2РАСПР имеет два параметра. Первый из них – значение χ2, второй – число степеней свободы. Чаще всего считают, что распределение не является нормальным, если α˂0,05.

Критерий Хи-квадрат позволяет сравнивать распределения частот вне зависимости от того, распределены они нормально или нет.

Под частотой понимается количество появлений какого-либо события. Обычно, с частотой появления события имеют дело, когда переменные измерены в шкале наименований и другой их характеристики, кроме частоты подобрать невозможно или проблематично. Другими словами, когда переменная имеет качественные характеристики. Так же многие исследователи склонны переводить баллы теста в уровни (высокий, средний, низкий) и строить таблицы распределений баллов, чтобы узнать количество человек по этим уровням. Чтобы доказать, что в одном из уровней (в одной из категорий) количество человек действительно больше (меньше) так же используется коэффициент Хи-квадрат.

22. Коэффициент ранговой корреляции Кендала

НЕМЕТРИЧЕСКАЯ КОРРЕЛЯЦИЯ

Иногда маркетологу необходимо вычислить коэффициент корреляции между двумя немет-

рическими переменными. Вспомним, что неметрические переменные нельзя измерить с по-

мошью интервальной или относительной шкалы и они не подчиняются закону нормального

распределения. Если мы имеем дело с порядковыми и числовыми неметрическими перемен-

ными, то для изучения связи между ними можно использовать два показателя неметрической

корреляции (nonmetric correlation): коэффициент ранговой корреляции Спирмена д. (Spearmen1

rho ps) и коэффициент ранговой корреляции Кендалла т (Kendall's tau т).

Коэффициент неметрической корреляци (nonmetric correlation)

Показатель корреляции для двух неметрических переменных, в котором используются ранги

переменных.

Для вычисления обоих коэффициентов используют ранги, а не абсолютные значения пе-

ременных, и подход, лежащий в основе их применения, совершенно одинаков. Оба коэффи-

циента изменяются в диапазоне от—1 до+1 (см. главу 15).

При отсутствии связанных рангов значение коэффициента ранговой корреляции Спирме-

на р, значительно ближе к коэффициенту парной корреляции Пирсона р, чем коэффициента

ранговой корреляции Кендалла т. В этих случаях абсолютное значение г стремится стать меньше, чем р Пирсона. С другой стороны, если данные содержат большое количество связанных рангов, то коэффициент г больше подходит для вычисления корреляции. В качестве эмпири-

ческого правила стоит запомнить, что коэффициент ранговой корреляции Кендалла целесооб-

разно использовать, когда большинство наблюдений попадает в относительно небольшое число категорий (что приводит к большому количеству связанных рангов). И наоборот, целесообразно использовать коэффициент ранговой корреляции Спирмена, когда мы имеем относительно большое число категорий (что приводит к небольшому количеству совпадающих рангов) [7].

Парная корреляция, так же как частный и частичный коэффициенты корреляции, состав-

ляют концептуальную основу для парного и множественного регрессионного анализа.