
- •0. Основные формулы комбинаторики
- •0/ /Выбор с возвращением и с учётом порядка.
- •| . . . | | . | . . | . . | | . |
- •| . . | . | . | . . | . . | | . | | | | | | | | . . . . . . . . . |
- •1. Классическое и геометрическое определения вероятности, примеры.
- •1//Геометрическое определение вероятности.
- •2. Дискретное вероятностное пространство, примеры.
- •3. Парадоксы доаксиоматической теории вероятностей.
- •4.Аксиоматика Колмогорова, вложение пред определений в аксиоматику.
- •5. Свойства вероятностей.
- •7. Условная вероятность. Теорема умножения вероятностей.
- •8. Независимость событий, примеры независимых и зависимых событий.
- •9. Формула полной вероятности, примеры.
- •10. Формула Байеса, примеры.
- •11. Схема Бернулли, примеры, полиномиальная схема.
- •12. Теорема Пуассона, примеры применения.
- •13. Теоремы Муавра-Лапласа, примеры применения.
- •14. Случайные величины, их распределения, функции распределения и их свойства.
- •15. Свойства плотностей распределения.
- •16. Математическое ожидание, механическая интерпретация, свойства.
- •17. Вычисление математических ожиданий функций от случайных величин с помощью дискретных и непрерывных плотностей распределения.
- •18. Свойства и статистический смысл дисперсии.
- •19. Математическое ожидание и дисперсия нормального закона.
- •20. Математическое ожидание и дисперсия биномиального распределения.
- •21. Математическое ожидание и дисперсия закона Пуассона.
- •22. Коэффициент корреляции и его свойства.
- •23. Двумерное нормальное распределение.
- •24. Случайные векторы, их распределения, функции и плотности распределения и их свойства.
- •25.Многомерный нормальный вектор
- •26. Теорема о плотности распределения преобразованной случайной величины.
- •27. Теорема о плотности распределения преобразованного случайного вектора. Примеры.
- •1. Преобразование случайных величин.
- •28. Неравенство Чебышева, закон больших чисел.
- •28//Закон больших чисел
- •29. Свойства характеристических функций.
- •30. Центральная предельная теорема Леви. Вывод из неё интегральной теоремы Муавра-Лапласа.
- •31. Свойства производящих функций, примеры их вычисления.
- •32. Примеры использования производящих функций для вычисления моментов.
- •33. Определение и свойства условного математического ожидания.
- •34. Условное мат ожидание и условное распределение одного подвектора норм случ вектора относит другого подвектора
- •34//Условная вероятность.
- •35. Задачи оценивания в математической статистике, состоятельность, несмещаемость, эффективность оценки.
- •36. Примеры построения оценок и исследования их свойств
- •36//Основные свойства
- •37. Критерий проверки гипотез.
- •38. Критерий Колиогорова и критерий χ², примеры.
- •39. Доверительные интервалы, примеры.
- •39//Пример:
- •40. Марковские цепи. Определения и основные характеристики.
- •41. Классификация состояний Марковских цепей. Период.
- •42. Уравнения Чупмена-Колмогорова.
- •43. Критерий возвратности и следствия из него.
- •44. Возвратность цепей Маркова
- •45. Эргодическая теорема для цепей Маркова.
13. Теоремы Муавра-Лапласа, примеры применения.
Теоремы Муавра-Лапласа.
Пусть в каждом из n независимых испытаний событие A может произойти с вероятностью P, q = 1 - p (условия схемы Бернулли). Обозначим как и раньше, через Pn(k) вероятность ровно k появлений события А в n испытаниях. кроме того, пусть Pn(k1k2) – вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа.
Если n – велико, а р – отлично от 0 и 1, то
где
- функция Гаусса (функция табулирована,
таблицу можно скачать на странице формул
по теории вероятностей).
Интегральная теорема Лапласа.
Если n – велико, а р – отлично от 0 и 1, то
Pn(k1k2)
где
- функция Лапласа (функция табулирована,
таблицу можно скачать на странице формул
по теории вероятностей).
Функции Гаусса и Лапласа обладают свойствами, которые необходимо знать при использовании таблиц значений этих функций:
а)
б) при больших x
верно,
.
Теоремы Лапласа
дают удовлетворительное приближение
при .
Причем чем ближе значения q,p
к 0,5, тем точнее данные формулы. При
маленьких или больших значениях
вероятности (близких к 0 или 1) формула
дает большую погрешность (по сравнению
с исходной формулой Бернулли).
Пример. Для мастера определенной квалификации вероятность изготовить деталь отличного качества равна 0,75. За смену он изготовил 400 деталей. Найти вероятность того, что в их числе 280 деталей отличного качества.
Решение. По условию , откуда n = 400, p = 0.75, q = 0.25, k = 280 откуда
По таблицам найдем
.
Искомая вероятность
равна:
.
14. Случайные величины, их распределения, функции распределения и их свойства.
Для получения количественной характеристики вводится понятие случайной величины.
Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.
Случайные величины можно разделить на две категории.
Определение. Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).
Это множество может быть как конечным, так и бесконечным.
Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
Определение. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.
Очевидно, что число возможных значений непрерывной случайной величины бесконечно.
Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.
Распределения случайных величин и функции распределения.
Распределение числовой случайной величины – это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.
Первое – если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р(Х = х), ставящей каждому возможному значению х случайной величины Х вероятность того, что Х = х.
Второе – если
случайная величина принимает бесконечно
много значений. Это возможно лишь тогда,
когда вероятностное пространство, на
котором определена случайная величина,
состоит из бесконечного числа элементарных
событий. Тогда распределение задается
набором вероятностей P(a
X
<b)
для всех пар чисел a,
b
таких, что a
< b.
Распределение может быть задано с
помощью т.н. функции
распределения F(x)
= P(X<x),
определяющей для всех действительных
х
вероятность того, что случайная величина
Х
принимает значения, меньшие х.
Ясно, что
P(a
X
<b)
= F(b)
– F(a).
Это соотношение показывает, что как распределение может быть рассчитано по функции распределения, так и, наоборот, функция распределения – по распределению.
Используемые в прикладных исследованиях функции распределения бывают либо дискретными, либо непрерывными, либо их комбинациями.
Дискретные функции распределения соответствуют дискретным случайным величинам, принимающим конечное число значений или же значения из множества, элементы которого можно перенумеровать натуральными числами (такие множества в математике называют счетными). Их график имеет вид ступенчатой лестницы (рис. 1).
Пример. Число Х дефектных изделий в партии принимает значение 0 с вероятностью 0,3, значение 1 с вероятностью 0,4, значение 2 с вероятностью 0,2 и значение 3 с вероятностью 0,1. График функции распределения случайной величины Х изображен на рис.1.
14//
Рис.1. График функции распределения числа дефектных изделий.
Непрерывные функции
распределения не имеют скачков. Они
монотонно возрастают при увеличении
аргумента – от 0 при
до 1 при
.
Случайные величины, имеющие непрерывные
функции распределения, называют
непрерывными.
Практически используемые непрерывные функции распределения, как правило, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,
По плотности вероятности можно определить функцию распределения:
Для любой функции распределения:
А потому
Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей.