
- •0. Основные формулы комбинаторики
- •0/ /Выбор с возвращением и с учётом порядка.
- •| . . . | | . | . . | . . | | . |
- •| . . | . | . | . . | . . | | . | | | | | | | | . . . . . . . . . |
- •1. Классическое и геометрическое определения вероятности, примеры.
- •1//Геометрическое определение вероятности.
- •2. Дискретное вероятностное пространство, примеры.
- •3. Парадоксы доаксиоматической теории вероятностей.
- •4.Аксиоматика Колмогорова, вложение пред определений в аксиоматику.
- •5. Свойства вероятностей.
- •7. Условная вероятность. Теорема умножения вероятностей.
- •8. Независимость событий, примеры независимых и зависимых событий.
- •9. Формула полной вероятности, примеры.
- •10. Формула Байеса, примеры.
- •11. Схема Бернулли, примеры, полиномиальная схема.
- •12. Теорема Пуассона, примеры применения.
- •13. Теоремы Муавра-Лапласа, примеры применения.
- •14. Случайные величины, их распределения, функции распределения и их свойства.
- •15. Свойства плотностей распределения.
- •16. Математическое ожидание, механическая интерпретация, свойства.
- •17. Вычисление математических ожиданий функций от случайных величин с помощью дискретных и непрерывных плотностей распределения.
- •18. Свойства и статистический смысл дисперсии.
- •19. Математическое ожидание и дисперсия нормального закона.
- •20. Математическое ожидание и дисперсия биномиального распределения.
- •21. Математическое ожидание и дисперсия закона Пуассона.
- •22. Коэффициент корреляции и его свойства.
- •23. Двумерное нормальное распределение.
- •24. Случайные векторы, их распределения, функции и плотности распределения и их свойства.
- •25.Многомерный нормальный вектор
- •26. Теорема о плотности распределения преобразованной случайной величины.
- •27. Теорема о плотности распределения преобразованного случайного вектора. Примеры.
- •1. Преобразование случайных величин.
- •28. Неравенство Чебышева, закон больших чисел.
- •28//Закон больших чисел
- •29. Свойства характеристических функций.
- •30. Центральная предельная теорема Леви. Вывод из неё интегральной теоремы Муавра-Лапласа.
- •31. Свойства производящих функций, примеры их вычисления.
- •32. Примеры использования производящих функций для вычисления моментов.
- •33. Определение и свойства условного математического ожидания.
- •34. Условное мат ожидание и условное распределение одного подвектора норм случ вектора относит другого подвектора
- •34//Условная вероятность.
- •35. Задачи оценивания в математической статистике, состоятельность, несмещаемость, эффективность оценки.
- •36. Примеры построения оценок и исследования их свойств
- •36//Основные свойства
- •37. Критерий проверки гипотез.
- •38. Критерий Колиогорова и критерий χ², примеры.
- •39. Доверительные интервалы, примеры.
- •39//Пример:
- •40. Марковские цепи. Определения и основные характеристики.
- •41. Классификация состояний Марковских цепей. Период.
- •42. Уравнения Чупмена-Колмогорова.
- •43. Критерий возвратности и следствия из него.
- •44. Возвратность цепей Маркова
- •45. Эргодическая теорема для цепей Маркова.
1. Классическое и геометрическое определения вероятности, примеры.
Классическое определение вероятности.
Как было сказано
выше, при большом числе n
испытаний частота P*(A)=m/n
появления события A
обладает устойчивостью и дает приближенное
значение вероятности события A,
т.е. P(A)P*(A).
Это обстоятельство позволяет находить приближенно вероятность события опытным путем. Практически такой способ нахождения вероятности события не всегда удобен. В ряде случаев вероятность события удается определить до опыта с помощью понятия равновероятности событий (или равновозможности).
Два события называются равновероятными (или равновозможными), если нет никаких объективных причин считать, что одно из них может наступить чаще, чем другое.
Так, например, появления герба или надписи при бросании монеты представляют собой равновероятные события.
Рассмотрим другой пример. Пусть бросают игральную кость. В силу симметрии кубика можно считать, что появление любой из цифр 1, 2, 3, 4, 5 или 6 одинаково возможно (равновероятно).
События E1,E2, ..., EN в данном опыте образуют полную группу, если в результате опыта должно произойти хотя бы одно из них.
Так, в последнем примере полная группа событий состоит из шести событий — появлений цифр 1, 2, 3, 4, 5 и 6.
Очевидно, любое
событие A
и противоположное ему событие
образуют полную группу.
Событие B называется благоприятствующим событию A, если наступление события B влечет за собой наступление события A.
Так, если A — появление четного числа очков при бросании игральной кости, то появление цифры 4 представляет собой событие, благоприятствующее событию A.
Пусть события E1,E2, ..., EN в данном опыте образуют полную группу равновероятных и попарно несовместных событий. Будем называть их исходами испытания. Предположим, что событию A благоприятствуют M исходов испытания. Тогда вероятностью события A в данном опыте называют отношение M/N. Итак, мы приходим к следующему определению.
Вероятностью P(A) события в данном опыте называется отношение числа M исходов опыта, благоприятствующих событию A, к общему числу N возможных исходов опыта, образующих полную группу равновероятных попарно несовместных событий:
Это определение вероятности часто называют классическим. Можно показать, что классическое определение удовлетворяет аксиомам вероятности.
Пример 1. На завод привезли партию из 1000 подшипников. Случайно в эту партию попало 30 подшипников, не удовлетворяющих стандарту. Определить вероятность P(A) того, что взятый наудачу подшипник окажется стандартным.
Пример 2. В урне 10 шаров: 3 белых и 7 черных. Из урны вынимают сразу два шара. Какова вероятность p того, что оба шара окажутся белыми?
Пример 3. В урне 2 зеленых, 7 красных, 5 коричневых и 10 белых шаров. Какова вероятность появления цветного шара?
1//Геометрическое определение вероятности.
Пусть случайное испытание можно представить себе как бросание точки наудачу в некоторую геометрическую область G (на прямой, плоскости или пространстве). Элементарные исходы – это отдельные точки G, любое событие – это подмножество этой области, пространства элементарных исходов G. Можно считать, что все точки G «равноправны» и тогда вероятность попадания точки в некоторое подмножество пропорционально его мере (длине, площади, объему) и не зависит от его расположения и формы.
Геометрическая вероятность события А определяется отношением:
где m(G), m(A) – геометрические меры (длины, площади или объемы) всего пространства элементарных исходов и события А.
Пример. На плоскость, разграфленную параллельными полосами шириной 2d, расстояние между осевыми линиями которых равно 2D, наудачу брошен круг радиуса r (r+d < D). Найти вероятность того, что круг пересечёт некоторую полосы.