
- •0. Основные формулы комбинаторики
- •0/ /Выбор с возвращением и с учётом порядка.
- •| . . . | | . | . . | . . | | . |
- •| . . | . | . | . . | . . | | . | | | | | | | | . . . . . . . . . |
- •1. Классическое и геометрическое определения вероятности, примеры.
- •1//Геометрическое определение вероятности.
- •2. Дискретное вероятностное пространство, примеры.
- •3. Парадоксы доаксиоматической теории вероятностей.
- •4.Аксиоматика Колмогорова, вложение пред определений в аксиоматику.
- •5. Свойства вероятностей.
- •7. Условная вероятность. Теорема умножения вероятностей.
- •8. Независимость событий, примеры независимых и зависимых событий.
- •9. Формула полной вероятности, примеры.
- •10. Формула Байеса, примеры.
- •11. Схема Бернулли, примеры, полиномиальная схема.
- •12. Теорема Пуассона, примеры применения.
- •13. Теоремы Муавра-Лапласа, примеры применения.
- •14. Случайные величины, их распределения, функции распределения и их свойства.
- •15. Свойства плотностей распределения.
- •16. Математическое ожидание, механическая интерпретация, свойства.
- •17. Вычисление математических ожиданий функций от случайных величин с помощью дискретных и непрерывных плотностей распределения.
- •18. Свойства и статистический смысл дисперсии.
- •19. Математическое ожидание и дисперсия нормального закона.
- •20. Математическое ожидание и дисперсия биномиального распределения.
- •21. Математическое ожидание и дисперсия закона Пуассона.
- •22. Коэффициент корреляции и его свойства.
- •23. Двумерное нормальное распределение.
- •24. Случайные векторы, их распределения, функции и плотности распределения и их свойства.
- •25.Многомерный нормальный вектор
- •26. Теорема о плотности распределения преобразованной случайной величины.
- •27. Теорема о плотности распределения преобразованного случайного вектора. Примеры.
- •1. Преобразование случайных величин.
- •28. Неравенство Чебышева, закон больших чисел.
- •28//Закон больших чисел
- •29. Свойства характеристических функций.
- •30. Центральная предельная теорема Леви. Вывод из неё интегральной теоремы Муавра-Лапласа.
- •31. Свойства производящих функций, примеры их вычисления.
- •32. Примеры использования производящих функций для вычисления моментов.
- •33. Определение и свойства условного математического ожидания.
- •34. Условное мат ожидание и условное распределение одного подвектора норм случ вектора относит другого подвектора
- •34//Условная вероятность.
- •35. Задачи оценивания в математической статистике, состоятельность, несмещаемость, эффективность оценки.
- •36. Примеры построения оценок и исследования их свойств
- •36//Основные свойства
- •37. Критерий проверки гипотез.
- •38. Критерий Колиогорова и критерий χ², примеры.
- •39. Доверительные интервалы, примеры.
- •39//Пример:
- •40. Марковские цепи. Определения и основные характеристики.
- •41. Классификация состояний Марковских цепей. Период.
- •42. Уравнения Чупмена-Колмогорова.
- •43. Критерий возвратности и следствия из него.
- •44. Возвратность цепей Маркова
- •45. Эргодическая теорема для цепей Маркова.
15. Свойства плотностей распределения.
Рассмотрим свойства плотности распределения f(x).
1. Всегда f(x)≥0, так как функция F(x) является неубывающей функцией.
2 Для функции распределения F(x) справедливо равенство:
Действительно, так как по определению f(x)=F'(x), то F(x) является первообразной функцией по отношению к плотности распределения f(x). Следовательно,
3. Вероятность попадания случайной величины в заданный интервал [Α ; Β] равна:
Действительно, в соответствии с формулой Ньютона-Лейбница этот определенный интеграл равен F(Β) - F(Α). По 3-му свойству функции распределения вероятностей эта разность и представляет собой вероятность P{Α≤X<Β} .
4. Интеграл от плотности распределения вероятности по всей области задания случайной величины равен единице:
Равенство
представляет
условие нормировки вероятностей для
непрерывных случайных величин. По смыслу
данный интеграл есть не что иное, как
F(∞) = 1.
Условие нормировки вероятностей часто
используется для определения неизвестного
параметра закона распределения.
Для иллюстрации геометрического смысла перечисленных свойств приведем пример графика плотности распределения вероятностей. Для большей наглядности на рис. представлен также график соответствующей функции распределения вероятностей.
Вся кривая плотности распределения вероятностей располагается выше оси OХ (свойство 1), причем максимум плотности достигается в точке х = а, в которой функция распределения вероятностей имеет наибольшую крутизну. Вероятность попадания случайной величины в интервал [Α ; Β] численно равна площади криволинейной трапеции, построенной на этом интервале как на основании и ограниченной сверху графиком плотности распределения (заштрихованная на рисунке область). Площадь всей криволинейной трапеции, заключенной между осью OХ и графиком плотности распределения, всегда равна единице. Любая функция, удовлетворяющая перечисленным выше свойствам, может быть плотностью распределения некоторой непрерывной случайной величины.
16. Математическое ожидание, механическая интерпретация, свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом:
m1 - число подшипников с внешним диаметром х1,
m2 - число подшипников с внешним диаметром х2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mn - число подшипников с внешним диаметром хn,
Здесь m1 + m2 + ... + mn = N. Найдем среднее арифметическое значение xср внешнего диаметра подшипника. Очевидно,
Внешний диаметр
вынутого наудачу подшипника можно
рассматривать как случайную величину
,
принимающую значения х1,
х2,
..., хn,
c
соответствующими вероятностями p1=m1/N,
p2=m2/N,
..., pn=mn/N,
так как вероятность pi
появления подшипника с внешним диаметром
xi
равна mi/N.
Таким образом, среднее арифметическое
значение xср
внешнего диаметра подшипника можно
определить с помощью соотношения
Пусть
- дискретная случайная величина с
заданным законом распределения
вероятностей
Значения
|
|
|
… |
|
Вероятности |
|
|
… |
|
Математическим
ожиданием
дискретной случайной величины
называется сумма парных произведений
всех возможных значений случайной
величины на соответствующие им
вероятности, т.е.
Возвращаясь
к разобранному выше примеру, мы видим,
что средний диаметр подшипника равен
математическому ожиданию случайной
величины
- диаметру подшипника.
Математическим
ожиданием
непрерывной случайной величины
с плотностью распределения
называется число, определяемое равенством
При
этом предполагается, что несобственный
интеграл, стоящий в правой части равенства
существует.
Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.
1°. Математическое ожидание постоянной С равно этой постоянной.
Доказательство.
Постоянную C
можно рассматривать как случайную
величину ,
которая может принимать только одно
значение C
c
вероятностью равной единице. Поэтому
.
2°. Постоянный множитель можно выносить за знак математического ожидания, т.е.
Доказательство. Имеем
3°.
Математическое ожидание суммы нескольких
случайных величин равно сумме
математических ожиданий этих величин:
4°. Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий этих величин: