
- •1 Информатика
- •1.1 Предмет и задачи информатики
- •1.2 Истоки и предпосылки информатики
- •1.3 Структура современной информатики
- •2 Понятие информации
- •2.1 Развитие представлений об информации
- •Современное представление об информации
- •2.2 Свойства информации
- •2.3 Мера информации Синтаксическая мера информации — бит и байт
- •Мера информации по Шеннону
- •Семантическая и прагматическая меры информации
- •2.4 Признаки классификации информации
- •2.5 Информационные процессы
- •Понятие сжатия информации
- •3 Кодирование, декодирование и шифрование информации
- •3.1 Основные понятия
- •6 Информационные системы
- •6.1 Понятие информационной системы
- •6.2 Структура информационных систем
- •6.3 Классификация информационных систем Классификация ис по признаку структурированности задач
- •Классификация ис по функциональному признаку и уровням управления
- •Классификация по степени автоматизации
- •Классификация по характеру использования информации
- •Классификация по сфере применения
- •7 Информационные технологии
- •7.1 Понятие информационной технологии
- •7.2 Этапы развития информационных технологий
- •7.3 Проблемы использования информационных технологий
- •1) Устаревание информационной технологии
- •2) Методология использования информационной технологии
- •3) Выбор вариантов внедрения информационной технологии в фирме
- •7.4 Виды информационных технологий
- •1. Ит обработки данных
- •2. Ит управления
- •3. Автоматизация офиса
- •4. Ит поддержки принятия решений
- •5. Ит экспертных систем
- •8 Аппаратное обеспечение компьютера. Базовая архитектура пк. Состав вычислительной системы
- •8.1 Аппаратное обеспечение
- •9.2 Классификация прикладных программных средств
- •9.3 Классификация служебных программных средств
- •10 Системы управления базами данных
- •10.1 Базы данных
- •Классификация баз данных
- •10.2 Виды моделей данных
- •Иерархическая модель данных
- •Сетевая модель данных
- •Реляционная модель данных
- •10.3 Реляционные бд
- •Нормализация отношении Понятие нормализации отношений
- •Типы связей
- •10.4 Построение инфологической модели
- •10.5 Функциональные возможности субд
- •11 Компьютерные сети. Интернет
- •11.1 Назначение и классификация компьютерных сетей
- •Классификация сетей:
- •11.2 Топологий сетей
- •11.3 Сетевые компоненты
- •7.9. Internet как иерархия сетей
- •7.9.1. Протоколы Интернет
- •7.9.2. Адресация в Интернет
- •7.9.3. Доменные имена
- •7.9.4. Варианты доступа в Интернет
- •7.9.5. Система адресации url
- •7.9.6. Сервисы Интернет
- •7.9.7. Поиск в Интернете
- •12 Понятие информационной безопасности. Основы и методы защиты информации
- •12. 1 Понятие «Информационная безопасность»
- •Основные составляющие информационной безопасности
- •Важность и сложность проблемы информационной безопасности
- •Основная литература
- •Дополнительная литература
7.9. Internet как иерархия сетей
Слово Internet происходит от выражения interconnected networks (связанные сети). Это глобальное сообщество малых и больших сетей. В широком смысле - это глобальное информационное пространство, хранящее огромное количество информации на миллионах компьютеров, которые обмениваются данными.
К концу 1969 г. в США был завершен проект ARPAnet подключением в одну компьютерную сеть 4 исследовательских центров: University of California Los Angeles, Stanford Research Institute, University of California at Santa Barbara, University of Utah. Проект также предусматривал проведение экспериментов в области компьютерных коммуникаций, изучение способов поддержания связи в условиях ядерного нападения и разработку концепции децентрализованного управления военными и гражданскими объектами в период ведения войн. В 1972 г. Минобороны США начало разработку новой программы Internetting Project с целью изучения методов соединения сетей между собой. Выдвигались требования максимальной надежности передачи данных при заведомо низком качестве коммуникаций, средств связи и оборудования и возможности передачи больших объемов информации. В 1974 г. была поставлена задача разработки универсального протокола передачи данных, которая была решена созданием протокола передачи данных и объединения сетей - Transmission Control Protocol/Internet Protocol (TCP/IP). В 1983 г. был осуществлен перевод ARPAnet на TCP/IP. В 1989 г. в Европейской лаборатории физики элементарных частиц (CERN, Швейцария, Женева) Тим Бернерс-Ли разработал технологию гипертекстовых документов — World Wide Web, позволяющую пользователям иметь доступ к любой информации, находящейся в сети Интернет на компьютерах по всему миру. К 1995 г. темпы роста сети показали, что регулирование вопросов подключения и финансирования не может находиться в руках одного Национального научного фонда США, и в этом же году произошла передача региональным сетям оплаты за подсоединение многочисленных частных сетей к национальной магистрали.
Рассмотрим схему подключения компьютера к Интернет и проследим, по каким каналам передается информация, посылаемая в Сеть и принимаемая из Сети. Подключение к Интернету домашнего компьютера выполняется, как правило, с помощью модема (рис. 7.8). При этом чаще всего осуществляется так называемое сеансовое соединение с провайдером по телефонной линии. Набирается один из телефонных номеров, предоставленных провайдером, для соединения с одним из его модемов. У провайдера имеется набор модемов, так называемый модемный пул. После того, как вы соединились с ISP (Internet Service Provider), ваш компьютер становится частью сети данного ISP. Каждый провайдер имеет свою магистральную линию или backbone.
ISP-провайдеры имеют так называемые точки присутствия POP (Point of Presence), где происходит подключение локальных пользователей. Провайдер может иметь точки присутствия POP в нескольких городах. В каждом городе находятся аналогичные модемные пулы, на которые звонят локальные клиенты этого провайдера в данном городе. Провайдер обычно арендует волоконно-оптические линии у телефонной компании для соединения всех своих точек присутствия. Крупные коммуникационные компании имеют собственные высокопропускные каналы.
Пусть имеются опорные сети двух Интернет-провайдеров. Очевидно, что все клиенты провайдера А могут взаимодействовать между собой по собственной сети, а все клиенты провайдера В — по своей, но при отсутствии связи между сетями А и В клиенты разных провайдеров не могут связаться друг с другом. Для реализации такой услуги провайдеры А и В подключаются к так называемым точкам доступа NAP (Network Access Points) в разных городах, и трафик между двумя сетями течет через NAP. Аналогично организуется подключение к другим магистральным сетям, в результате чего образуется объединение множества сетей высокого уровня. В Интернете действуют сотни крупных провайдеров, их магистральные сети связаны через NAP в различных городах, и миллиарды байтов данных текут по разным сетям через NAP-узлы.
В офисе компьютеры, скорее всего, подключены к локальной сети. В этом случае рассмотренная схема видоизменяется. Варианты подключения к провайдеру могут быть различными, хотя чаще всего это выделенная линия.
На сегодняшний день существует множество компаний, имеющих собственные опорные сети (бэкбоуны), которые связываются с помощью NAP с сетями других компаний по всему миру. Благодаря этому каждый, кто находится в Интернете, имеет доступ к любому его узлу, независимо от того, где он расположен территориально.
Скорость передачи информации на различных участках Интернета существенно различается. Магистральные линии - это высокоскоростные каналы, построенные на основе волоконно-оптических кабелей. Кабели обозначаются ОС (optical carrier), например ОС-3, ОС-12 или ОС-48. Так, линия ОС-3 может передавать 155 Мбит/с, а ОС-48 — 2488 Мбит/с (2,488 Гбит/с). Но максимальная скорость получения информации на домашний компьютер с модемным подключением не превышает 56 Кбит/с.
Как же происходит передача информации по всем этим многочисленным каналам? Доставка информации по нужному адресу выполняется с помощью маршрутизаторов, определяющих, по какому маршруту передавать информацию. Маршрутизатор — это устройство, которое работает с несколькими каналами, направляя в выбранный канал очередной блок данных. Выбор канала осуществляется по адресу, указанному в заголовке поступившего сообщения.
Таким образом, маршрутизатор выполняет две взаимосвязанные функции. Во-первых, он направляет информацию по свободным каналам, предотвращая закупорку узких мест в Сети; во-вторых, проверяет, что информация следует в нужном направлении. При объединении двух сетей маршрутизатор включается в обе сети, пропуская информацию из одной в другую. В некоторых случаях он осуществляет перевод данных из одного протокола в другой, при этом защищая сети от лишнего трафика. Эту функцию маршрутизаторов можно сравнить с работой службы ГИБДД, которая ведет наблюдение за автомобильным движением с вертолета и сообщает водителям оптимальный маршрут.