
- •1 Информатика
- •1.1 Предмет и задачи информатики
- •1.2 Истоки и предпосылки информатики
- •1.3 Структура современной информатики
- •2 Понятие информации
- •2.1 Развитие представлений об информации
- •Современное представление об информации
- •2.2 Свойства информации
- •2.3 Мера информации Синтаксическая мера информации — бит и байт
- •Мера информации по Шеннону
- •Семантическая и прагматическая меры информации
- •2.4 Признаки классификации информации
- •2.5 Информационные процессы
- •Понятие сжатия информации
- •3 Кодирование, декодирование и шифрование информации
- •3.1 Основные понятия
- •6 Информационные системы
- •6.1 Понятие информационной системы
- •6.2 Структура информационных систем
- •6.3 Классификация информационных систем Классификация ис по признаку структурированности задач
- •Классификация ис по функциональному признаку и уровням управления
- •Классификация по степени автоматизации
- •Классификация по характеру использования информации
- •Классификация по сфере применения
- •7 Информационные технологии
- •7.1 Понятие информационной технологии
- •7.2 Этапы развития информационных технологий
- •7.3 Проблемы использования информационных технологий
- •1) Устаревание информационной технологии
- •2) Методология использования информационной технологии
- •3) Выбор вариантов внедрения информационной технологии в фирме
- •7.4 Виды информационных технологий
- •1. Ит обработки данных
- •2. Ит управления
- •3. Автоматизация офиса
- •4. Ит поддержки принятия решений
- •5. Ит экспертных систем
- •8 Аппаратное обеспечение компьютера. Базовая архитектура пк. Состав вычислительной системы
- •8.1 Аппаратное обеспечение
- •9.2 Классификация прикладных программных средств
- •9.3 Классификация служебных программных средств
- •10 Системы управления базами данных
- •10.1 Базы данных
- •Классификация баз данных
- •10.2 Виды моделей данных
- •Иерархическая модель данных
- •Сетевая модель данных
- •Реляционная модель данных
- •10.3 Реляционные бд
- •Нормализация отношении Понятие нормализации отношений
- •Типы связей
- •10.4 Построение инфологической модели
- •10.5 Функциональные возможности субд
- •11 Компьютерные сети. Интернет
- •11.1 Назначение и классификация компьютерных сетей
- •Классификация сетей:
- •11.2 Топологий сетей
- •11.3 Сетевые компоненты
- •7.9. Internet как иерархия сетей
- •7.9.1. Протоколы Интернет
- •7.9.2. Адресация в Интернет
- •7.9.3. Доменные имена
- •7.9.4. Варианты доступа в Интернет
- •7.9.5. Система адресации url
- •7.9.6. Сервисы Интернет
- •7.9.7. Поиск в Интернете
- •12 Понятие информационной безопасности. Основы и методы защиты информации
- •12. 1 Понятие «Информационная безопасность»
- •Основные составляющие информационной безопасности
- •Важность и сложность проблемы информационной безопасности
- •Основная литература
- •Дополнительная литература
11.3 Сетевые компоненты
Сетевые кабели
На сегодня подавляющая часть компьютерных сетей использует для соединения кабели. Это среда передачи сигналов между компьютерами.
В большинстве сетей применяются три основные группы кабелей:
коаксиальный кабель;
витая пара (twisted pair), неэкранированная (unshielded) и экранированная (shielded);
оптоволоконный кабель.
Коаксиальный кабель до недавнего времени был самым распространенным. Недорогой, легкий, гибкий, удобный, безопасный и простой в установке.
Существует два типа коаксиальных кабелей: тонкий (спецификация 10Base2) и толстый (спецификация 10Base5).
Тонкий - гибкий, диаметр 0,64 см (0,25"). Прост в применении и подходит практически для любого типа сети. Подключается непосредственно к плате сетевого адаптера. Передает сигнал на 185 м практически без затухания. Волновое сопротивление — 50 ом.
Толстый — жесткий, диаметр 1,27 см (0,5"). Его иногда называют стандартный Ethernet (первый кабель в популярной сетевой архитектуре). Жила толще, затухание меньше. Передает сигнал без затухания на 500 м. Используют в качестве магистрали, соединяющей несколько небольших сетей. Волновое сопротивление - 75 ом.
Для подключения к толстому коаксиальному кабелю применяется специальное устройство - трансивер (transceiver - приемопередатчик). Он снабжен коннектором, который называется вампир или пронзающий ответвитель. К сетевой плате трансивер подключается с помощью кабеля с разъемом. Для подключения тонкого коаксиального кабеля используются BNC-коннекторы (British Naval Connector). Применяются BNC-T-коннекторы для соединения сетевого кабеля с сетевой платой компьютера, BNC—баррел-коннекторы для сращивания двух отрезков кабеля, BNC-терминаторы для поглощения сигналов на обоих концах кабеля в сетях с топологией шина.
Витая пара — это два перевитых изолированных медных провода. Несколько витых пар проводов часто помещают в одну защитную оболочку. Переплетение проводов позволяет избавиться от электрических помех, наводимых соседними проводами и другими внешними источниками, например двигателями, трансформаторами, мощными реле.
Неэкранированная витая пара (UTP) широко используется в ЛВС, максимальная длина 100 м. UTP определена особым стандартом, в котором указаны нормативные характеристики кабелей для различных применений, что гарантирует единообразие продукции.
Экранированная витая пара (STP) помещена в медную оплетку. Кроме того, пары проводов обмотаны фольгой. Поэтому STP меньше подвержены влиянию электрических помех и может передавать сигналы с более высокой скоростью и на большие расстояния.
Преимущества витой пары — дешевизна, простота при подключении. Недостатки — нельзя использовать при передаче данных на большие расстояния с высокой скоростью.
В оптоволоконном кабеле цифровые данные распространяются по оптическим волокнам в виде модулированных световых импульсов. Это надежный способ передачи, так как электрические сигналы при этом не передаются. Следовательно, оптоволоконный кабель нельзя вскрыть и перехватить данные.
Оптоволоконные линии предназначены для перемещения больших объемов данных на очень высоких скоростях, так как сигнал в них практически не затухает и не искажается. Оптоволокно передает сигналы только в одном направлении, поэтому кабель состоит из двух волокон с отдельными коннекторами: одно — для передачи, другое — для приема.
Скорость передачи данных в настоящее время составляет от 100 Мбит/с. Между тем, получает все большее распространение скорость 1 Гбит/с, теоретически — до 200 Гбит/с. Расстояние - многие километры. Кабель не подвержен электрическим помехам. Существенным недостатком этой технологии является дороговизна и сложность в установке и подключении.
Типичная оптическая сеть состоит из лазерного передатчика света, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптических сигналов, демультиплексоров и приемников, преобразующих оптический сигнал обратно в электрический. Все эти компоненты обычно собираются вручную.
Для передачи по кабелю кодированных сигналов используют две технологии — немодулированную и модулированную передачу.
Немодулированные системы передают данные в виде цифровых сигналов, которые представляют собой дискретные электрические или световые импульсы. При таком способе цифровой сигнал использует всю полосу пропускания кабеля (полоса пропускания — разница между максимальной и минимальной частотой, которую можно передать по кабелю). Устройство в сетях с немодулированной передачей посылает данные в обоих направлениях. Для того, чтобы избежать затухания и искажения сигнала в немодулированных системах, используют репитеры, которые усиливают и ретранслируют сигнал.
Модулированные системы передают данные в виде аналогового сигнала (электрического или светового), занимающего некоторую полосу частот. Если полосы пропускания достаточно, то один кабель могут одновременно использовать несколько систем (например, транслировать передачи кабельного телевидения и передавать данные). Каждой передающей системе выделяется часть полосы пропускания. Для восстановления сигнала в модулированных системах используют усилители. В модулированной системе устройства имеют раздельные тракты для приема и передачи сигнала, так как передача идет в одном направлении. Чтобы устройства могли и передавать, и принимать данные, используют разбиение полосы пропускания на два канала, которые работают с разными частотами для передачи и приема, или прокладку двух кабелей — для передачи и приема.
Беспроводная среда
История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 1930-е годы появилось радио с частотной модуляцией и телевидение. В 1970-е годы были созданы первые беспроводные телефонные системы. Сначала это были аналоговые сети, в начале 1980-х появился стандарт GSM, ознаменовавший начало перехода на цифровые стандарты как обеспечивающие лучшее распределение спектра, лучшее качество сигнала и большую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они стимулируют создание новых устройств и услуг.
Обилие новых беспроводных технологий, таких как CDMA (Code Division Multiple Access - технология с кодовым разделением каналов), GSM (Global System for Mobile Communications - глобальная система для мобильных коммуникаций), TDMA (Time Division Multiple Access - множественный доступ с разделением во времени), 802.11, WAP (Wireless Application Protocol - протокол беспроводных технологий), 3G (третье поколение), GPRS (General Packet Radio Service - услуга пакетной передачи данных), Bluetooth ("голубой зуб", по имени Харальда Голубого Зуба - предводителя викингов, жившего в Х веке), EDGE (Enhanced Data Rates for GSM Evolution - увеличенная скорость передачи данных для GSM), i-mode, говорит о том, что в этой области грядет революция.
Весьма перспективно и развитие беспроводных локальных сетей (WLAN), Bluetooth (сети средних и коротких расстояний). Беспроводные сети развертываются в аэропортах, университетах, отелях, ресторанах, на предприятиях. Точкой отсчета в области разработки стандартов беспроводных сетей является образование всемирной организацией IEEE (Институт инженеров по электричеству и электронике) комитета 802.11 в 1990 году. Значительный импульс развитию беспроводных технологий дала Всемирная Паутина и идея работы в Сети при помощи беспроводных устройств. В конце 90-х годов пользователям была предложена WAP-услуга, сначала не вызвавшая большого интереса. Это были основные информационные услуги - новости, погода, всевозможные расписания и т. п. Также поначалу не пользовались спросом и Bluetooth, и WLAN - в основном из-за высокой стоимости этих средств связи. Однако по мере снижения цен рос и интерес населения. К середине первого десятилетия XXI века счет пользователей беспроводного Internet-сервиса пошел на десятки миллионов. С появлением беспроводной Internet-связи на первый план вышли вопросы обеспечения безопасности. Основные угрозы при использовании беспроводных сетей - это перехват сообщений спецслужб, коммерческих предприятий и частных лиц, перехват номеров кредитных карточек, кража оплаченного времени соединения, вмешательство в работу коммуникационных центров. Эти проблемы решаются по мере совершенствования стандартов связи.
Существенной для развития беспроводных технологий является и возможность их применения домашними пользователями. Чем больше устройств в домашней сети, тем сильнее загромождают дом соединяющие их провода. А это уже повод для перехода на беспроводные технологии. Повышение степени комфортности современного дома, объединение в одно целое всех его структур и объектов (компьютера, телевизора, цифровой фотокамеры, домашнего развлекательного центра, системы охраны, климатической системы, бытовой техники и т. д.) - основа идеи создания интеллектуального цифрового дома, которая также реализуется с помощью беспроводных устройств.
Платы сетевого адаптера
Платы сетевого адаптера (СА) выступают в качестве физического интерфейса, или соединения, между компьютером и сетевым кабелем. Платы вставляются в слоты расширения материнской платы всех сетевых компьютеров и серверов или интегрируются на материнскую плату. Для обеспечения физического соединения между компьютером и сетью к разъему платы подключается сетевой кабель.
Сетевой адаптер выполняет:
подготовку данных, поступающих от компьютера, к передаче по сетевому кабелю;
передачу данных другому компьютеру;
управление потоком данных между компьютером и кабельной системой;
прием данных из кабеля и перевод их в форму, понятную ЦП компьютера.
Плата СА должна также указать свое местонахождение или сетевой адрес, чтобы ее могли отличить от других плат сети. Сетевые адреса определены комитетом IEEE (Institute of Electrical and Electronics Engineers, Inc.), который закрепляет за каждым производителем плат сетевого адаптера некоторый интервал адресов. Производители зашивают эти адреса в микросхемы, поэтому каждый компьютер имеет свой уникальный номер, т.е. адрес в сети.
Перед тем, как послать данные по сети, плата СА проводит электронный диалог с принимающей платой, в результате которого они устанавливают:
максимальный размер блока передаваемых данных;
объем данных, пересылаемых без подтверждения о получении;
интервал между передачами блоков данных;
интервал, в течение которого необходимо послать подтверждение;
объем данных, который может принять плата без переполнения буфера;
скорость передачи.
Если новая (более сложная и быстрая) плата взаимодействует с устаревшей (медленной) платой, то они должны найти общую для них обеих скорость передачи. Схемы современных плат позволяют им приспособиться к низкой скорости старых плат. Каждая плата оповещает другую о своих параметрах, принимая чужие параметры и подстраиваясь к ним. После определения всех деталей начинается обмен данными.
Для правильной работы платы должны быть корректно установлены следующие параметры:
номер прерывания (IRQ — interrupt query);
базовый адрес порта;
I/O.Базовый адрес памяти;
тип трансивера.
Для обеспечения совместимости компьютера и сети плата СА должна соответствовать внутренней структуре компьютера (архитектуре шины данных) и иметь соответствующий соединитель, подходящий к типу кабельной системы.
Например, плата, которая нормально работает в компьютере Apple Macintosh в сети с топологией шина, не будет работать в компьютере IBM в сети с топологией кольцо. Сеть топологии кольцо требует плату, которая физически отличается от применяемой в сети топологии шина, к тому же Apple использует другой метод сетевого взаимодействия.