
- •Содержание тепло- и массообменные процессы
- •Лекция 5. Основы массопередачи 75
- •1. Общие сведения
- •2. Тепловые балансы
- •3. Основное уравнение теплопередачи
- •4. Тепловое излучение
- •Лекция 2
- •XII. Нагревание, охлаждение и конденсация
- •1. Общие сведения
- •1. Общие сведения
- •2. Нагревающие агенты и способы нагревания
- •2.1. Нагревание водяным паром
- •2.2. Нагревание горячей водой
- •2.3. Нагревание топочными газами
- •3. Охлаждающие агенты, способы охлаждения и конденсации
- •3.1. Охлаждение до обыкновенных температур
- •3.2. Охлаждение до низких температур
- •3.3. Конденсация паров
- •Лекция 3
- •3.4. Конструкции теплообменных аппаратов
- •1. Трубчатые теплообменники
- •2. Змеевиковые теплообменники
- •3. Пластинчатые теплообменники
- •4. Оребренные теплообменники
- •5. Спиральные теплообменники
- •7. Теплообменники других типов
- •Лекция 4
- •XIII. Выпаривание
- •Общие сведения
- •1. Общие сведения
- •2. Однокорпусные выпарные установки
- •3. Многокорпусные выпарные установки
- •4. Устройство выпарных аппаратов
- •Лекция 5
- •XIV. Основы массопередачи
- •1. Общие сведения
- •2.1. Общие сведения
- •1. Общие сведения
- •2. Абсорбция
- •2.1. Общие сведения
- •2.2. Материальный баланс процесса
- •2.3. Устройство абсорбционных аппаратов
- •Поверхностные и пленочные абсорберы
- •Насадочные абсорберы
- •Барботажные (тарельчатые) абсорберы
- •Распыливающие абсорберы
- •3. Десорбция
- •4. Схемы абсорбционных установок
- •Лекция 6
- •XV. Перегонка жидкостей
- •1. Общие сведения
- •1. Общие сведения
- •2. Простая перегонка
- •3. Ректификация
- •3.1. Схемы ректификационных установок для разделения бинарных смесей
- •3.2. Устройство ректификационных аппаратов
- •4. Специальные виды перегонки
- •4.1. Экстрактивная ректификация
- •4.2. Азеотропная ректификация
- •4.3. Молекулярная дистилляция
- •4.4. Низкотемпературная ректификация
- •Лекция 7
- •XVI. Экстракция
- •1.1. Общие сведения
- •1. Процессы экстракции в системах жидкость—жидкость
- •1.1. Общие сведения
- •1.2. Методы экстракции
- •1.3. Устройство экстракционных аппаратов
- •Ступенчатые экстракторы
- •Дифференциально-контактные экстракторы Гравитационные экстракторы (без подвода внешней энергии)
- •Экстракторы с подводом внешней энергии
- •Центробежные экстракторы
- •Лекция 8 процессы экстракции и растворения в системах твердое тело—жидкость
- •1. Общие сведения
- •1. Общие сведения
- •2. Способы экстракции и растворения
- •3. Устройство экстракционных аппаратов
- •Лекция 9
- •XVII. Адсорбция
- •1. Общие сведения
- •1. Общие сведения
- •2. Характеристики адсорбентов и их виды
- •3. Десорбция
- •4. Устройство адсорберов и схемы адсорбционных установок
- •5. Ионообменные процессы
- •Лекция 10
- •XVIII. Сушка
- •1. Общие сведения
- •1. Общие сведения
- •2. Устройство сушилок
- •Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- •Конвективные сушилки с перемешиванием слоя материала
- •Конвективные сушилки со взвешенным слоем материала
- •Конвективные сушилки с пневмотранспортом материала
- •Контактные сушилки
- •3. Специальные виды сушки и типы сушилок
- •Лекция 11
- •XIX. Холодильные процессы
- •1.1. Общие сведения
- •1. Искусственное охлаждение
- •1.1. Общие сведения
- •1.2. Абсорбционные холодильные машины
- •1.3. Пароводяные эжекторные холодильные машины
- •Литература
3. Ректификация
П
ринцип
ректификации.
Как отмечалось, достаточно высокая
степень разделения однородных жидких
смесей на компоненты может быть
достигнута путем ректификации.
Сущность процессов, из которых складывается
ректификация, и получаемые при этом
результаты можно проследить с помощью
t—х—y-диаграммы
(рис. ХV-6).
Нагрев исходную смесь состава х1 до температуры кипения, получим находящийся в равновесии с жидкостью пар (точка b). Отбор и конденсация этого пара дают жидкость состава x2, обогащенную НК (х2 >х1). Нагрев эту жидкость до температуры кипени t2, получим пар (точка d), конденсация которого дает жидкость с еще большим содержанием НК, имеющую состав х3, и т.д. Проводя таким образом последовательно ряд процессов испарения жидкости и конденсации паров, можно получить в итоге жидкость (дистиллят), представляющую собой практически чистый НК.
Аналогично, исходя из паровой фазы, соответствующей составу жидкости x4, путем проведения ряда последовательных процессов конденсации и испарения можно получить жидкость (остаток), состоящую почти целиком из ВК.
В простейшем виде процесс многократного испарения можно осуществить в многоступенчатой установке, в первой ступени которой испаряется исходная смесь. На вторую ступень поступает на испарение жидкость, оставшаяся после отделения паров в первой ступени, в третьей ступени испаряется жидкость, поступившая из второй ступени (после отбора из последней паров), и т.д. Аналогично может быть организован процесс многократной конденсации, при котором на каждую следующую ступень поступают для конденсации пары, оставшиеся после отделения от них жидкости (конденсата) в предыдущей ступени.
При достаточно большом числе ступеней таким путем можно получить жидкую или паровую фазу с достаточно высокой концентрацией компонента, которым она обогащается. Однако выход этой фазы будет мал по отношению к ее количеству в исходной смеси. Кроме того, описанные установки отличаются громоздкостью и большими потерями тепла в окружающую среду.
Значительно более экономичное, полное и четкое разделение смесей на компоненты достигается в процессах ректификации, проводимых обычно в более компактных аппаратах — ректификационных колоннах.
Процессы ректификации осуществляются периодически или непрерывно при различных давлениях: при атмосферном давлении, под вакуумом (для разделения смесей высококипящих веществ), а также под давлением больше атмосферного (для разделения смесей, являющихся газообразными при нормальных температурах).
3.1. Схемы ректификационных установок для разделения бинарных смесей
Непрерывно действующие установки. Рассмотрим, как реализуются указанные выше условия в ректификационных колоннах непрерывного действия (рис. ХV-7), которые наиболее широко применяются в промышленности.
XV-7.
Ректификационная колонна 1 имеет цилиндрический корпус, внутри которого установлены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника 2, который находится вне колонны, т.е. является выносным (как показано на рисунке ХV-7), либо размещается непосредственно под колонной. Следовательно, с помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости на нижней тарелке, которую будем считать первой, ведя нумерацию тарелок условно снизу вверх.
Пусть концентрация жидкости на первой тарелке равна х1 (по низкокипящему компоненту), а ее температура t1. В результате взаимодействия между жидкостью и паром, имеющим более высокую температуру, жидкость частично испаряется, причем в пар переходит преимущественно НК. Поэтому на следующую (вторую) тарелку поступает пар с содержанием НК у1 > х1.
Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Из пара конденсируется и переходит в жидкость преимущественно ВК, содержание которого в поступающем на тарелку паре выше равновесного с составом жидкости на тарелке. При равенстве теплот испарения компонентов бинарной смеси для испарения 1 моль НК необходимо сконденсировать 1 моль ВК, т.е. фазы на тарелке обмениваются эквимолекулярными количествам компонентов.
На второй тарелке жидкость имеет состав х2, содержит больше НК, чем на первой (x2 > х1), и соответственно кипит при. более низкой температуре (t2 < t1). Соприкасаясь с ней, пар состава у1 частично конденсируется, обогащается НК и удаляется на вышерасположенную тарелку, имея состав у2 > x2, и т.д.
Таким образом, пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается низкокипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого НК, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны.
Пары конденсируются в дефлегматоре 3, охлаждаемом водой, и получаемая жидкость разделяется в делителе 4 на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. Следовательно, с помощью дефлегматора в колонне создается нисходящий поток жидкости.
Жидкость, поступающая на орошение колонны (флегма), представляет собой почти чистый НК. Однако, стекая по колонне и взаимодействуя с паром, жидкость все более обогащается ВК, конденсирующимся из пара.
Когда жидкость достигает нижней тарелки, она становится практически чистым ВК и поступает в кипятильник, обогреваемый глухим паром или другим теплоносителем.
На некотором расстоянии от верха колонны к жидкости из дефлегматора присоединяется исходная смесь, которая поступает на так называемую питающую тарелку колонны. Для того чтобы уменьшить тепловую нагрузку кипятильника, исходную смесь обычно предварительно нагревают в подогревателе 5 до температуры кипения жидкости на питающей тарелке.
Питающая тарелка как бы делит колонну на две части, имеющие различное назначение. В верхней части 1а (от питающей до верхней тарелки) должно быть обеспечено возможно большее укрепление паров, т.е. обогащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому НК. Поэтому данная часть колонны называется укрепляющей. В нижней части 1б (от питающей до нижней тарелки) необходимо в максимальной степени удалить из жидкости HK, т.е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому ВК. Соответственно эта часть колонны называется исчерпывающей.
В дефлегматоре 3 могут быть сконденсированы либо все пары, поступающие из колонны, либо только часть их, соответствующая количеству возвращаемой в колонну флегмы. В первом случае часть конденсата, остающаяся после отделения флегмы, представляет собой дистиллят (ректификат), или, верхний продукт, который после охлаждения в холодильнике 6 направляется в сборник дистиллята 9. Во втором случае несконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике 6, который при, таком варианте работы служит конденсатором-холодильником дистиллята.
Жидкость, выходящая из низа колонны (близкая по составу ВК), также делится на две части. Одна часть, как указывалось, направляется в кипятильник, а другая — остаток (нижний продукт) после охлаждения водой в холодильнике 7 направляется в сборник 8.
На рис. XV-7 приведена лишь принципиальная схема непрерывно действующей ректификационной установки. Такие установки оснащаются необходимыми контрольно-измерительными и регулирующими приборами, позволяющими автоматизировать их работу и проводить процесс с помощью программного управления в оптимальных условиях. Путем автоматического регулирования сводятся к минимуму колебания количества, состава и температуры исходной смеси, давления и расхода греющего пара и расхода охлаждающей воды.
П
ериодически
действующие установки.
В производствах небольшого масштаба
используются ректификационные установки
периодического действия (рис. ХV-8).
Исходную смесь загружают в куб 1,
снабженный нагревательным устройством.
Смесь подогревается до кипения и ее
пары поступают под нижнюю тарелку
ректификационной колонны 2, Поднимаясь
по колонне, пары обогащаются НК, которым
обедняется стекающая вниз флегма,
поступающая из дефлегматора 3 на верхнюю
тарелку колонны. Пары из колонны
направляются в дефлегматор 3, где они
полностью или частично конденсируются.
В случае полной конденсации жидкость
разделяется с помощью делителя 4 на
флегму и дистиллят. Конечный продукт
(дистиллят) охлаждают в холодильнике 5
и направляют в сборники 6.
После того как достигнут заданный состав остатка в кубе (об этом судят по температуре кипения жидкости в нем) остаток сливают, загружают куб исходной смесью и операцию повторяют.
Сопоставляя периодически действующую колонну (рис. ХV-8) с ректификационной колонной непрерывного действия (рис. ХV-7), можно заметить, что первая работает, подобно верхней части непрерывно-действующей колонны, как колонна для укрепления паров, а куб играет роль исчерпывающей части.