
- •Содержание тепло- и массообменные процессы
- •Лекция 5. Основы массопередачи 75
- •1. Общие сведения
- •2. Тепловые балансы
- •3. Основное уравнение теплопередачи
- •4. Тепловое излучение
- •Лекция 2
- •XII. Нагревание, охлаждение и конденсация
- •1. Общие сведения
- •1. Общие сведения
- •2. Нагревающие агенты и способы нагревания
- •2.1. Нагревание водяным паром
- •2.2. Нагревание горячей водой
- •2.3. Нагревание топочными газами
- •3. Охлаждающие агенты, способы охлаждения и конденсации
- •3.1. Охлаждение до обыкновенных температур
- •3.2. Охлаждение до низких температур
- •3.3. Конденсация паров
- •Лекция 3
- •3.4. Конструкции теплообменных аппаратов
- •1. Трубчатые теплообменники
- •2. Змеевиковые теплообменники
- •3. Пластинчатые теплообменники
- •4. Оребренные теплообменники
- •5. Спиральные теплообменники
- •7. Теплообменники других типов
- •Лекция 4
- •XIII. Выпаривание
- •Общие сведения
- •1. Общие сведения
- •2. Однокорпусные выпарные установки
- •3. Многокорпусные выпарные установки
- •4. Устройство выпарных аппаратов
- •Лекция 5
- •XIV. Основы массопередачи
- •1. Общие сведения
- •2.1. Общие сведения
- •1. Общие сведения
- •2. Абсорбция
- •2.1. Общие сведения
- •2.2. Материальный баланс процесса
- •2.3. Устройство абсорбционных аппаратов
- •Поверхностные и пленочные абсорберы
- •Насадочные абсорберы
- •Барботажные (тарельчатые) абсорберы
- •Распыливающие абсорберы
- •3. Десорбция
- •4. Схемы абсорбционных установок
- •Лекция 6
- •XV. Перегонка жидкостей
- •1. Общие сведения
- •1. Общие сведения
- •2. Простая перегонка
- •3. Ректификация
- •3.1. Схемы ректификационных установок для разделения бинарных смесей
- •3.2. Устройство ректификационных аппаратов
- •4. Специальные виды перегонки
- •4.1. Экстрактивная ректификация
- •4.2. Азеотропная ректификация
- •4.3. Молекулярная дистилляция
- •4.4. Низкотемпературная ректификация
- •Лекция 7
- •XVI. Экстракция
- •1.1. Общие сведения
- •1. Процессы экстракции в системах жидкость—жидкость
- •1.1. Общие сведения
- •1.2. Методы экстракции
- •1.3. Устройство экстракционных аппаратов
- •Ступенчатые экстракторы
- •Дифференциально-контактные экстракторы Гравитационные экстракторы (без подвода внешней энергии)
- •Экстракторы с подводом внешней энергии
- •Центробежные экстракторы
- •Лекция 8 процессы экстракции и растворения в системах твердое тело—жидкость
- •1. Общие сведения
- •1. Общие сведения
- •2. Способы экстракции и растворения
- •3. Устройство экстракционных аппаратов
- •Лекция 9
- •XVII. Адсорбция
- •1. Общие сведения
- •1. Общие сведения
- •2. Характеристики адсорбентов и их виды
- •3. Десорбция
- •4. Устройство адсорберов и схемы адсорбционных установок
- •5. Ионообменные процессы
- •Лекция 10
- •XVIII. Сушка
- •1. Общие сведения
- •1. Общие сведения
- •2. Устройство сушилок
- •Конвективные сушилки с неподвижным или движущимся плотным слоем материала
- •Конвективные сушилки с перемешиванием слоя материала
- •Конвективные сушилки со взвешенным слоем материала
- •Конвективные сушилки с пневмотранспортом материала
- •Контактные сушилки
- •3. Специальные виды сушки и типы сушилок
- •Лекция 11
- •XIX. Холодильные процессы
- •1.1. Общие сведения
- •1. Искусственное охлаждение
- •1.1. Общие сведения
- •1.2. Абсорбционные холодильные машины
- •1.3. Пароводяные эжекторные холодильные машины
- •Литература
2. Однокорпусные выпарные установки
К
ак
указывалось, однокорпусная выпарная
установка включает лишь один выпарной
аппарат (корпус). Рассмотрим принципиальную
схему одиночного непрерывно действующего
выпарного аппарата с естественной
циркуляцией раствора на примере аппарата
с внутренней центральной
циркуляционной трубой
(рис. XIII-1).
Аппарат состоит из теплообменного устройства — нагревательной (греющей) камеры 1 и сепаратора, 2. Камера и сепаратор могут быть объединены в одном аппарате (рис. XIII-1) или камера может быть вынесена и соединена с сепаратором трубами (рис. XIII-1). Камера обогревается обычно водяным насыщенным паром, поступающим в ее межтрубное пространство. Конденсат отводят снизу камеры.
Поднимаясь по трубам 3, выпариваемый раствор нагревается и кипит с образованием вторичного пара. Отделение пара от жидкости происходит в сепараторе 2. Освобожденный от брызг и капель вторичный пар удаляется из верхней части сепаратора.
Часть жидкости опускается по циркуляционной трубе 4 под нижнюю трубную решетку греющей камеры. Вследствие разности плотностей раствора в трубе 4 и парожидкостной эмульсии в трубах 3 жидкость циркулирует по замкнутому контуру. Упаренный (сконцентрированный) раствор удаляется через штуцер в днище аппарата.
Имеются также конструкции выпарных аппаратов без циркуляционной трубы.
Если выпаривание производится под вакуумом, то вторичный пар отсасывается в конденсатор паров, соединенный с вакуум-насосом (на рис XIII-1 не показаны).
Материальный баланс. Согласно рис. XIII-1, на выпаривание поступает GH кг/сек исходного раствора концентрацией bн вес. % и удаляется Gk кг/сек упаренного раствора концентрацией bк вес. %. Если в аппарате выпаривается W кг/сек растворителя (воды), то общий материальный баланс аппарата выражается уравнением
Gн = Gк + W (XIII.1)
Материальный баланс по абсолютно сухому веществу, находящемуся в растворе:
(XIII.2)
В уравнения (XIII,1) и (XIII,2) входят пять переменных, из которых какие-либо три величины должны быть заданы. При практических расчетах наиболее часто бывают заданы: расход исходного раствора Gн, его концентрация bн и требуемая конечная концентрация bк упаренного раствора. Тогда по уравнениям (XIII,1) и (XIII,2) определяют производительность аппарата:
по упаренному раствору
(XIII,3)
по выпариваемой воде
(XIII.4)
Тепловой баланс. Введем обозначения D — расход греющего пара; Iг— его энтальпия; I — энтальпия вторичного пара; iн = cнtн — энтальпия исходного раствора; i = cкtк — энтальпия конечного (упаренного) раствора; i' = c' — энтальпия конденсата греющего пара; сн, ск, с' — средние удельные теплоемкости исходного раствора, конечного раствора и конденсата соответственно (в пределах от 0 °С до температуры жидкости); tн, tк, — температуры исходного и конечного растворов и насыщения греющего пара соответственно.
Приход и расход тепла будут:
Приход тепла Расход тепла
С исходным раствором.Gнiн С упаренным раствором…GKi'K
С греющим паром …… DIг С вторичным паром………WI
С паровым конденсатом ….Di'
Теплота концентрирования………………………..Qконц Потери тепла в окружаю-
щую среду…………………Qn
Соответственно уравнение теплового баланса имеет вид:
Gнiн + Dlг = Gкiк + Wl + Di′ + Qконц + Qк (XIII.5)
Рассматривая исходный раствор как смесь упаренного раствора и подлежащей испарению воды и допуская, что теплоемкость сн исходного раствора в пределах температур от tн до tk остается постоянной, запишем тепловой баланс смешения при температуре кипения раствора в аппарате:
Gнснtн = Gкск tk + Wс"tк (XIII,5)
где с" — средняя удельная теплоемкость воды (в пределах температур от 0°С до tк).
Отсюда
Gкск = Gнсн + Wс" (XIII.6)
Подставляя значения iн, ik,, i' и Gkck в уравнение (IX,5), получим
Gнснtн + Dlг = Gнснtк + Wс"tк + Wl + Dc′ + Qконц + Qп
Из этого уравнения определим количество тепла, подводимого в единицу времени с теплоносителем (греющим паром), или тепловую нагрузку Q выпарного аппарата:
Q = D(lг – c′) = Gнсн(tн – tк) + W(l – с"tк)+ Qконц + Qп (XIII,7)
Первый член правой части уравнения (IX,7) выражает расход тепла в аппарате на нагревание исходного раствора до температуры кипения, второй член правой части — расход тепла на испарение влаги из раствора. Кроме того, тепло затрачивается на концентрирование раствора (если тепловой эффект концентрирования отрицателен) и на компенсацию потерь тепла в окружающую среду.
Входящая в уравнение (XIII,8) теплота концентрирования Qконц выражает тепловой эффект концентрирования раствора. Она равна разности (q кДж/кг) интегральных теплот растворения 1 кг растворенного вещества в исходном и концентрированном растворах, взятой с обратным знаком и умноженной на расход растворенного вещества.
Так как при концентрировании раствора тепло может поглощаться или выделяться, то Qконц может входить не только в расходную, но и в приходную части теплового баланса. Теплота концентрирования учитывается в тепловом балансе выпарного аппарата, если она значительна и ею пренебречь нельзя.
Величину Qn обычно принимают в виде доли от тепловой нагрузки Q аппарата; обычно задаются Qn = (0,03—0,05) Q. Эту величину потерь тепла в окружающую среду обеспечивают благодаря необходимой толщине тепловой изоляции аппарата.
Из уравнения (XIII,7) может быть определен расход греющего пара:
(XIII.8)
Из уравнения (XIII,8) можно, пренебрегая величинами Qконц и Qn, определить теоретический расход пара на выпаривание 1 кг растворителя (воды). Если принять, что исходный раствор поступает в аппарат предварительно нагретым до температуры кипения, т.е. tn — tk, то
(XIII.9)
где tг — с' = t' — теплота конденсации греющего пара; I - c"tk = r — теплота испарения воды из кипящего раствора, которая в первом приближении может быть принята равной r'.
Это означает, что масса расходуемого греющего пара равна массе выпариваемой воды, или приближенно: в однокорпусном аппарате на выпаривание 1 кг воды надо затратить 1 кг греющего пара. Практически же, с учетом потерь тепла в окружающую среду и того, что r > r', удельный расход греющего пара увеличивается и составляет 1.1-1.2 кг/кг испаряемой влаги.