Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
all.docx
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
366.18 Кб
Скачать

16)Циклы гту с подводом теплоты при постоянном объеме.

Теоретический цикл ГТУ с изохорным подводом теплоты состоит из процесса адиабатного сжатия воздуха 1—2 в компрессоре, процесса изохорного подвода теплоты 2—3 в камере сгорания и процесса адиабатного расширения 3—4 продуктов сгорания в соплах газовой турбины. После преобразования кинетической энергии струи газа на рабочих лопатках и процесса отвода теплоты 4—1 от газа в окружающую среду при постоянном давлении р1 цикл завершается.

Цикл газовой турбины с изохорным подводом теплоты характеризуется степенью повышения давления при сжатии и степенью повышения давления при подводе теплоты .

Можно показать, что .

Исследование последнего выражения показывает, что термический к. п. д. ГТУ с изохорным подводом теплоты возрастает с увеличением β и λ.

Цикл ГТУ с подводом теплоты при v=const не получил широкого распространения из-за сложности конструкции камеры сгорания и ухудшения условий работы турбины в пульсирующем потоке продуктов

18) Цикл Ренкина.

Рабочим телом в таких установках является пар какой-либо жидкости (водяной пар). Принципиальная схема ПТУ показана на рис.7.1 и процесс получения работы происходит в следующим образом.

В паровом котле (1) и в перегревателе (2) теплота горения топлива передается воде. Полученный парпоступает в турбину (3), где происходит преобразование теплоты в механическую работу, а затем в электрическую энергию в электрогенераторе (4). Отработанный пар поступает в конденсатор (5), где отдает теплоту охлаждающей воде. Полученный конденсат насосом (6) отправляется в питательный бак (7), откуда питательным насосом (8) сжимается до давления, равного в котле, и подается через подогреватель (10) в паровой котел (1). Цикл Ренкина на насыщенном паре. Схема установки отличается от предыдущей схемы тем, что в данном случае будет отсутствовать перегреватель. Поэтому на турбину будет поступать насыщенный пар. На рис.7.2,а изображен цикл Ренкина в TS-диаграмме.

Процессы:

3-1 – подвод теплоты от источника в воде q1, состоит из двух процессов: 3-3/ - кипение воды в котле;

3/-1 – испарение воды в пар при постоянном давлении;

1-2 – в турбине пар расширяется адиабатически;

2-2/ - пар конденсируется и отдает тепло q2 охлаждающей воде;

2/-3 – конденсат адиабатически сжимается.

19) Регенеративный цикл псу.

23)Цикл пароэжекторной холодильной установки.

В одяной пар, образовавшийся при расширении насыщенной воды в дроссель 1 от давления р1 до давления р2, поступает в испаритель 2, размещенный в охлаждаемом объеме. Температура в испарителе пароэжекторной холодильной установки может быть ниже температуры тройной точки воды (0,01 °С), если в качестве хладагента использовать водный раствор соли. Из испарителя пар высокой степени сухости при давлении р2 направляется в камеру смешения парового эжектора 3. В сопло эжектора подается пар из котла 4 с давлением Рк. Расходы пара, подаваемого в камеру смешения эжектора из испарителя и в сопло эжектора из котла, подбираются таким образом, чтобы давление пара на выходе из диффузора эжектора равнялось р1. Из эжектора сухой насыщенный пар направляется в конденсатор 5, где он конденсируется, отдавая теплоту охлаждающей воде. Поток конденсата при давлении р1, выходящий из конденсатора, раздваивается — бóльшая часть воды направляется в холодильный контур, на вход редукционного вентиля 1, а меньшая часть — к насосу 6, в котором давление воды повышается до Рк. Насос 6 подает воду в котел. Парообразование происходит за счет теплоты, подводимой в котле.

Здесь I-II — процесс повышения давления воды в насосе; II-III-IV — процесс подвода теплоты в котле по изобаре pк= const (II-III — нагрев до кипения, III-IV — парообразование), a IV-V — процесс расширения пара в сопле эжектора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]