
- •Билет 1
- •1.Геофизические исследования скважин (гис). Задачи, решаемые геофизическими методами исследования скважин. Скважина как объект геофизических исследований
- •№2. Билет №2
- •1. Классификация методов гис.
- •№3 Билет №3
- •Билет №4
- •1. Правила определения границ пластов (разной мощности, высокого и низкого сопротивлений, градиент - и потенциал - зондов) по диаграммам метода кс.
- •2. Решаемые геологические задачи бэз. Выделение пластов-коллекторов по результатам бэз.
- •Экзаменационный билет №5
- •1. Бэз. Типы кривых зондирования. Интерпретация кривых бэз.
- •2. Метод потенциалов собственной поляризации (пс). Естественные электрические поля в скважинах. Обработка и интерпретация диаграмм пс. Выделение пластов-коллекторов.
- •3. Определение состава флюида в стволе скважины
- •Экзаменационный билет №6
- •1. Микрозондирование (мкз). Выделение пластов-коллекторов по диаграммам мкз.
- •2. Интерпретация кривых стационарных нейтронных методов.
- •3. Какие геофизические методы эффективны при контроле обводнения нефтяных пластов в скважинах, обсаженных стальными трубами? Газовых пластов?
- •Экзаменационный билет №7
- •1. Методика проведения работ гм. Определение глинистости.
- •2. Интерпретация кривых импульсных нейтронных методов.
- •3. Определение пористости и характера насыщения коллекторов по диаграммам нейтронных методов.
- •Экзаменационный билет №8
- •1. Гамма-гамма-каротаж (ггк). Метод рассеянного гамма - излучения.
- •3) 3. Методы операций в скважинах.
- •Экзаменационный билет №9
- •1. Основные модификации ггк. Физические основы, интерпретация кривых, определение коллекторских свойств пластов
- •3. Определение коэффициента пористости по данным акустического метода
- •Билет №10
- •Экзаменационный билет №11
- •Экзаменационный билет №12
- •2. Почему в скважинах, заполненных раствором на нефтяной основе, не возможен каротаж обычными зондами кс? Какие методы дадут хорошие результаты при этих условиях? Обоснуйте.
- •Билет№13
- •1.Метод сопротивления экранированного заземления. Физические основы, аппаратура, его достоинства и ограничения
- •2. Метод кажущегося сопротивления (кс). Зонды для работ методом кс. Методика и техника проведения метода кс.
- •3. Методы контроля технического состояния скважин.
- •Билет№14
- •1. Инклинометрия скважин.
- •3. Естественные электрические поля в скважинах. Обработка и интерпретация диаграмм пс. Выделение пластов-коллекторов.
- •Билет №15
- •Взаимодействие ионизационных излучений с окружающей средой.
- •Билет №16
- •2. Решаемые геологические задачи, физические основы, аппаратура метода бк
- •3. Определение коэффициента пористости по диаграммам ак
- •Билет №17
- •Область применения индукционного каротажа (ик). Преимущества и недостатки индукционного каротажа.
- •2. Нейтронные свойства основных породообразующих элементов
- •Билет №18
- •Нейтрон-нейтронный каротаж по тепловым нейтронам (ннк-т)
- •3. Методика проведения геотермических исследований. Как применяется при контроле разработки месторождений нефти и газа.
- •Экзаменационный билет №19
- •Экзаменационный билет №20
- •1. Назначение, принцип действия и устройство дистанционного электрического инклиномера. Построение инклинограмм и их использование.
- •Экзаменационный билет №21
- •Экзаменационный билет №22
- •3. Автоматизированные системы обработки и интерпретации данных гис-контроля. Современные обрабатывающие комплексы Компьютеризированные каротажные станции
- •Экзаменационный билет №23
- •3. Расходометрия
- •Экзаменационный билет №24
- •3. Стандартный комплекс геофизических методов при контроле разработки нефтяных и газовых месторождений
- •Билет 25
- •Электрическая характеристика объекта исследований
- •Определение сопротивления пластов
- •1. Геологические задачи, решаемые акустическим методом. Аппаратура, методика проведения работ.
- •2. Задачи, решаемые методом собственной поляризации в терригенных разрезах.
- •3. Каково влияние хлоросодержания на распределение плотности надтепловых и тепловых нейтронов в среде с различным водородосодержанием?
- •2. Задачи, решаемы с помощью пс
- •Нейтрон-нейтронный каротаж по тепловым нейтронам
- •Нейтрон-нейтронный каротаж по надтепловым нейтронам
- •1. Классификация методов каротажа. Круг задач, решаемых каротажом.
- •2. Приведите примеры обращенного и последовательного зондов, вычислите характеристики зондов и приведите примеры определения границ пласта этими зондами.
- •3. Как с помощью инклинометрии определяется положение скважины?
- •Билет 28.
- •1. Почему в скважине, заполненной буровым раствором на нефтяной основе, не эффективно проводить исследования методом кс? Рекомендуйте комплекс методов, которые в таких условиях эффективны.
- •2. Естественная радиактивность горных пород.
- •3. Определение интервалов затрубной циркуляции флюидов по данным высокочувствительной термометрии
- •Билет 29
- •2. Перечислите физико-химические процессы, вызывающие образование естественных электрических полей в скважинах.
- •3. Классификация методов электрического каротажа
- •3.Электрические методы
- •Экзаменационный билет №30
- •2. Методы по контролю качества цементирования скважины (термометрия, ггк, ак)
- •3.Определение границ пласта с помощью диаграмм гамма-методов.
- •Экзаменационный билет №31
- •Экзаменационный билет №32
- •2. Проведение акустических исследований и интерпретация их результатов
- •Экзаменационный билет №33
- •Экзаменационный билет №34
- •1. Основные законы теплопроводности и тепловые свойства горных пород
- •Экзаменационный билет №35
- •3. Что такое детекторы гамма-квантов и нейтронов, используемые в скважинных радиометрах? Объясните принцип работы аппаратуры радиоактивных методов.
- •Экзаменационный билет №36
- •Экзаменационный билет №37
Экзаменационный билет №35
1. На регистрации каких видов излучений основаны методы радиометрии скважин – гамма-метод, нейтронный гамма-метод, нейтрон-нейтронный метод, гамма-гамма-метод? В ГМ гамма излуч, НГК гамма излучение,ННК нейтроны,ГГМ гамма кванты
2. Естественное тепловое поле Земли. Региональное тепловое поле. Локальные тепловые поля. Искусственные тепловые поля Естественные поля могут быть связаны с региональным (глубинным) тепловым полем Земли, а могут быть обусловлены и местными процессами, например, окислением сульфидных руд, радиоактивным распадом, растворением солей, притоком подземных вод или выделением газа в скважину.
Искусственные поля могут возникнуть под действием тепла бурового раствора, схватывающегося цементного камня или специальных скважинных нагревателей. Подробно все причины возникновения тепловых полей в скважинах перечислены на рис. 15.1.
Региональный
тепловой поток в земной коре.
Ниже
нейтрального слоя температура пород
повышается в среднем на 3,3°С при погружении
на каждые 100 м. Это объясняется наличием
регионального теплового потока от
источников внутреннего тепла Земли,
поднимающегося к поверхности. Его
величину принято характеризовать
плотностью теплового потока (или просто
тепловым потоком) q.
Среднее
значение теплового потока как на суше,
так и в океанах одинаково и составляет
0,06 Вт/м2, отклоняясь от него не более чем
в 5—7 раз. Постоянство средних тепловых
потоков суши и океанов при резком
изменении мощностей и строения земной
коры свидетельствует о различии в
тепловом строении верхней мантии.
Поэтому аномалии тепловых потоков,т.
е. отклонения от установленных средних
потоков, несут информацию о строении и
земной коры, и верхней мантии.
Установлено, что основным источником тепла на континентах является энергия
радиоактивного распада. Это объясняется большей концентрацией радиоактивных элементов в земной коре, чем в мантии. В океанах, где мощность земной коры мала, основным источником тепла являются процессы в мантии на глубинах до 700—1000 км.Расчеты показывают, что радиогенное тепло является основным среди других видов тепловой энергии недр. За время существования Земли оно более чем в 2 раза превысило потери за счет теплопроводности.
Локальные составляющие теплового потока. Источники локальных тепловых
потоков, вызывающих аномалии температур, разнообразны: наличие многолетнемерзлых пород, т. е. мощных (до сотен метров) толщ с отрицательными
температурами; наличие пород и руд с повышенной радиоактивностью; влияние экзотермических и эндо-термических процессов, происходящих в нефтегазоносных горизонтах, залежах угля,сульфидных и других рудах; проявление современного вулканизма и тектонических движений; циркуляция подземных, в том числе термальных, вод и др. Роль каждого из этих факторов определяется геолого-гидрогеологическим строением. Локальные тепловые потоки, как и региональные, зависят не только от наличия источников, но и от условий переноса тепла за счет теплопроводности горных пород и конвекции почвенного воздуха и подземных вод.