
- •Телешев в.И., Ватин н.И., Марчук а.Н…. Производство гидротехнических работ
- •Часть 1. Общие вопросы строительства. Земляные и бетонные работы Под общей редакцией проф., д.Т.Н. Телешева в.И.
- •Часть 1. Общие вопросы строительства. Земляные и бетонные работы
- •Введение к учебнику «Производство гидротехнических работ»
- •Часть 1. Общие вопросы строительства. Земляные и бетонные работы
- •Предисловие к I части учебника
- •Раздел I. Общие вопросы строительства
- •Глава 1. Общая схема возведения речных гидротехнических сооружений
- •1.1. Особенности гидротехнического строительства
- •1.2. Периоды подготовки и строительства гидротехнических сооружений
- •1.3. Этапы возведения сооружений и пропуска строительных расходов
- •1.4. Особенности этапов возведения гидроузла и пропуска строительных расходов при различных компоновках основных сооружений
- •2.1. Возведение перемычек
- •2.2. Осушение котлованов
- •2.3. Перекрытие русла реки
- •Глава 3. Проекты организации строительства и проекты производства работ
- •3.1. Проекты организации строительства
- •3.2. Алгоритм составления календарных планов строительства крупных гидротехнических объектов
- •3.4. Проекты производства работ
- •3.4. Автоматизация разработки пос и ппр
- •Глава 4. Строительный транспорт и дороги
- •4.1. Общие положения по выбору типа транспорта
- •4.2. Автомобильный транспорт
- •4.3. Другие виды транспорта
- •Конвейерный транспорт, конвейерные поезда
- •Трубопроводный контейнерный пневмотранспорт. Подвесные канатные дороги
- •4.4. Строительные дороги
- •Глава 5. Основные положения определения производительности строительных машин
- •5.1. Категории производительности строительных машин
- •5.2. Определение годового режима работы строительных машин
- •5.3. Определение необходимой общей производительности и числа строительных машин
- •Раздел II. Производство земляных работ
- •Глава 6. Общие вопросы производства земляных работ
- •6.1. Виды земляных работ и сооружений
- •6.2. Строительные свойства грунтов
- •6.3 Определение объемов земляных работ. Баланс грунтовых масс
- •6.4. Баланс грунтовых масс
- •Глава 7. Технология производства земляных работ экскаваторами
- •7.1. Виды одноковшовых экскаваторов (о. Э.) и их рабочее оборудование
- •7.2. Технология производства земляных работ экскаваторами – прямая лопата
- •7.3. Технология производства работ экскаваторами «обратная лопата»
- •7.4. Технология производства работ экскаваторами – драглайн
- •7.5.Технология производства работ экскаватором - грейфером
- •7. 6. Производительность экскаваторов
- •Глава 8. Производства земляных работ землеройно-транспортными машинами
- •8.1. Виды землеройно-транспортных машин
- •8.2. Технология производства земляных работ скреперами
- •8.3. Технология производства земляных работ бульдозерами
- •8.4. Производства земляных работ грейдерами
- •8.5. Производства земляных работ подъемно-транспортными машинами (погрузчиками)
- •Глава 9. Возведение качественных насыпей
- •9.1 Качественные насыпи и состав технологических процессов
- •9.2 Сущность уплотнения и влияние различных факторов
- •Способы уплотнения грунтов
- •9.4 Особенности возведения неоднородных качественных насыпей
- •9.5. Определение производительности грунтоуплотняющих машин и параметров потока
- •Глава 10. Возведение земляных и каменно-набросных плотин с противофильтрационными элементами из негрунтовых материалов
- •10.1. Общие положения
- •10.2. Плотины с противофильтрационными элементами из асфальтобетона
- •10.3. Плотины с железобетонными экранами
- •10.4. Плотины с металлическими противофильтрационными элементами
- •10.5. Плотины с противофильтрационными элементами из геосинтетических материалов
- •10.6. Плотины на вечно мерзлом основании с мерзлотными противофильтрационными завесами
- •10.7. Плотины с завесами возводимыми методом струйной цементации
- •Глава 11. Производство земляных работ в зимний период
- •11.1. Особенности земляных работ зимой
- •11. 2. Разработка мерзлых грунтов
- •11.3. Оттаивание грунтов
- •11.4. Устройство качественных насыпей в зимний период
- •Глава 12. Производство работ средствами гидромеханизации
- •12.1. Сущность гидромеханизации и условия ее применения
- •12.2. Разработка грунтов гидромониторами
- •12.3. Разработка грунта земснарядами
- •12.4. Гидравлический транспорт грунта
- •12.5. Намыв земляных сооружений
- •Раздел III. Производство бетонных работ
- •Глава 13. Бетон гидротехнических сооружений и требования, предъявляемые к нему
- •13.1. Общая классификация бетонов
- •Требования к бетонам гидротехнических сооружений
- •13.3. Зональное расположение марок бетона
- •Глава 14. Теоретические основы определения требований к технологии бетонных работ
- •14.1. Температурный режим блоков бетонирования
- •14.2. Термонапряженное состояние блоков. Причины трещинообразования
- •14.3. Определение допустимых температурных перепадов
- •14.4. Факторы, влияющие на величину допустимого перепада температур
- •14.5. Приближенный метод определения величины необходимого снижения максимальной температуры в блоке по условиям его трещиностойкости
- •14.6. Принципиальные направления конструктивных и технологических мероприятий по обеспечению трещиностойкости и монолитности бетонных гидротехнических сооружений
- •14.7. Расчетное обоснование дополнительных мероприятий по регулированию температурного режима в блоках бетонирования в зимний период
- •Глава 15. Разрезка сооружений на блоки бетонирования
- •15.1. Основные причины разрезки сооружений постоянными и временными швами
- •15.2. Основные принципы разрезки сооружений на блоки бетонирования
- •15.3. Разрезка ярусная «вперевязку» («днепровская»)
- •15.4. Столбчатая система разрезки
- •15.5. Секционная система разрезки длинными блоками
- •15.6. Смешанные системы разрезки
- •Глава 16. Омоноличивание временных швов бетонных плотин
- •16.1. Общие положения
- •16.2. Омоноличивание швов с помощью цементации
- •16.3. Омоноличивание с помощью объемных замыкающих блоков
- •Глава 17. Вспомогательные работы
- •17.1. Заготовка заполнителей
- •17.2. Арматурные работы
- •17.3. Опалубочные работы
- •Глава 18. Приготовление бетонной смеси
- •18.1 Требования к бетонной смеси
- •18.2. Технологические схемы бетонных заводов и их оборудование
- •18.З. Определение производительности бетоносмесителей и бетонных заводов
- •Глава 19. Бетонное хозяйство
- •19.1 Состав бетонного хозяйства и определение мощности бетонного завода
- •19.2. Склады заполнителей
- •19.3.Склады цемента
- •19.4. Установки для регулирования температуры составляющих бетонной смеси
- •19.5. Прочие установки и сооружения
- •Глава 20. Транспортирование бетонной смеси
- •20.I. Выбор транспортной схемы бетонных работ
- •20.2. Выбор типа горизонтального транспорта
- •20.3. Подача бетонной смеси в блоки бетонирования
- •20.3. Выбор кранов
- •20.5. Определение производительности кранов
- •20.6. Определение комплексной производительности кранов
- •Глава 21. Подготовка блоков к бетонированию. Укладка и уплотнение бетонной смеси
- •21.1. Состав мероприятий по подготовке блоков к бетонированию
- •21.2. Подготовка оснований блоков
- •21.3. Уплотнение бетонной смеси
- •21.4. Технологические схемы (способы) укладки бетонной смеси в блоки бетонирования
- •Глава 22. Особенности производства бетонных работ в зимнее время
- •22.1. Дополнительные требования
- •22.2. Подготовка блоков к бетонированию
- •22.3. Приготовление и транспорт бетонной смеси
- •22.4. Укладка бетонной смеси
- •Глава 23. Уход за бетоном и контроль качества бетонных работ
- •23.1. Основные требования и мероприятия по уходу за бетоном
- •23.2. Контроль качества бетона и бетонных работ
- •Глава 24. Специальные виды бетонных работ
- •24А. Производство сборного железобетона
- •24А.1. Назначение и типы сборных элементов и конструкций
- •24А.2. Производство сборного железобетона
- •24А.3. Транспорт и монтаж сборных элементов
- •Глава 24б. Подводное бетонирование
- •24Б.1. Подводное бетонирование и требования к нему
- •24Б.2. Способы подводного бетонирования
- •Глава 25. Совершенствование технологии бетонных работ при возведении высоких бетонных плотин.
- •25.1. Особенности возведения высоких бетонных плотин и совершенствование технологий их бетонирования
- •25.2 Добавки для бетонов и их эффективность
- •25.3 Применение литых бетонов в гидротехническом строительстве
- •Опыт применение литого бетона на строительстве Бурейской гэс
- •Глава 26. Особенности возведения бетонных сооружений из укатанного бетона
- •Тенденции совершенствования технологии строительства бетонных плотин из укатанного бетона
- •1. Общая
- •2. К разделу і
- •3. К разделу іі
- •4. К разделу ііі
- •Дополнительная литература по Главе 10
- •Дополнительная литература по Главе 24
- •В параграфе 7.6 «Производительность экскаваторов» дан общий подход к определению оптимальных параметров забоев экскаваторов различных типов.
- •Расчет высоты забоя экскаватора типа
- •Объем захваченного ковшом грунта
Глава 16. Омоноличивание временных швов бетонных плотин
16.1. Общие положения
Как следует из гл.14, в период твердения бетон в блоках разогревается, а затем остывает до эксплуатационной температуры. В процессе остывания происходят деформации отдельных блоков и столбов, швы между ними раскрываются и для обеспечения монолитности работы требуется исключить отрицательное влияние этих раскрытий швов. При различных системах разрезки на блоки бетонирования условия раскрытия швов разные, а следовательно, мероприятия также разные.
Особенно сильно раскрытие швов сказывается при столбчатой разрезке. В связи с этим после остывания бетона до температур, ниже которых в будущем бетон в сооружении остывать не будет, производят так называемое омоноличивание швов, т.е. заполнение швов ("щелей") каким-то материалом. Для плотин с тонкими межстолбчатыми швами омоноличивание осуществляют путем цементации, а для плотин с объемными швами – путем бетонирования,
При секционной системе разрезки межблочные швы в пределах секции отсутствуют и раскрываются только межсекционные швы. В гравитационных типах плотин отдельные секции работают самостоятельно, поэтому омоноличивание межсекционных швов не требуется.
Для арочных плотин необходима совместная работа секций как в консольном, так и в арочном направлении. Поэтому для этих плотин требуется омоноличивание, также и межсекционных швов.
Омоноличивание может потребоваться и при смешанной системе разрезки, например, при комбинации столбчатой и секционной.
В связи с трудностью обеспечения в швах хорошего сцепления цементного раствора с бетоном столбов необходимо создавать условия, при которых материал в швах работал бы только на сжатие. Для этого в плоскости шва создают штрабы с ориентацией плоскостей по траектории главных напряжений. В результате по этим площадкам отсутствуют скалывающие напряжения и имеются только сжимающие (рис.16.1).
Рис. 16.1. Схема траекторий главных напряжений в плотине и ориентировка плоскостей штрабления в швах
I – траектории главных напряжений; 2 – узел I и II – ориентировка плоскостей штрабления в различных частях плотин
16.2. Омоноличивание швов с помощью цементации
Омоноличивание тонких межстолбчатых (для гравитационных плотин) и межсекционных (для арочных) швов осуществляют путем цементации этих швов. Как следует из предыдущего, бетон в сооружении в процессе эксплуатации принимает температуру, близкую к среднегодовой. Поэтому цементацию швов во избежание будущего дополнительного раскрытия в принципе необходимо проводить именно при температурах, близких к среднегодовой или ниже, когда дальнейшие температурные деформации в столбах уже не будут иметь места.
Омоноличивание выполняют до принятия напора омоноличиваемой части сооружения. Обычно в качестве расчетной температуры омоноличивания сооружения принимают среднемноголетнюю температуру бетонной кладки в районе расположения швов.
Качество
цементации в значительной степени
зависит от величины раскрытия шва.
Максимальное раскрытие швов от равномерных
температурных деформаций (без учета
перекосов столбов от неравномерного
распределения температуры) можно
определить, используя общую формулу
температурных деформаций:
.
Подставляя
значения
и
для нашего случая, получаем:
,
(16.1)
где:
и
– длина блоков в столбах 1 и 2;
и
– начальные средние температуры в
соседних столбах, соответствующие
моменту начала раскрытия шва;
и
– конечные средние температуры в
соседних столбах, соответствующие
моменту омоноличивания плотины (рис.
16.2).
Рис.16.2. К определению величины раскрытия межстолбчатого шва: а) расчетная схема столбов, б) температурный режим в столбах
1,
2 – номера столбов плотины; 3 – цементируемый
шов; 4 – высота яруса цементации; 5 –
раскрытие шва при равномерном остывании
столбов; 6 – дополнительное раскрытие
шва от перекоса столба из-за неравномерности
температуры по толщине столба; 7,8 –
,
– кривые изменения средних температур
в омоноличиваемых частях (картах); 9,10 –
,
– средние температуры в столбах 1 и 2 в
период начала раскрытия швов,
,
– время начала раскрытия швов и время
омоноличивания; 11, 12 –
,
– средние температуры в столбах
1 и 2 в период омоноличивания
За момент начала раскрытия шва следует принимать момент достижения максимальной температуры экзотермии во втором столбе, укладываемом с отставанием по времени от первого.
Фактически по данным натурных наблюдений на ряде плотин деформации несколько меньше, и поэтому необходимо вводить корректирующий коэффициент, равный 0,25–0,5. В то же время дополнительно необходимо учитывать перекос столбов от неравномерности изменения температуры в столбе (блоке) как в горизонтальном сечении, так и в вертикальном (рис. 16.2). Дополнительное раскрытие швов может достигать существенной величины.
Желательно, чтобы средняя температура в омоноличиваемых столбах была как можно ближе к среднегодовой эксплуатационной, т.е. для массивных сооружений близкой к среднегодовой температуре воздуха. Однако из-за сложности охлаждения до такой температуры часто температуру назначают несколько выше, если выполняется условие, при котором температурные напряжения от последующего дополнительного остывания бетона после цементации не превышают напряжений по плоскости шва от гидростатического давления и было исключено дополнительное раскрытие зацементированных швов. Исходя из этого температура омониличивания швов остается в пределах 5–10°С. Например, температура ононоличивания на плотинах Братской и Красноярской ГЭС 5–8°С, Ланджанурской – 13°С, Ингурской – 14°С, Саяно-Шушенской – 2–7°С.
Поскольку омоноличивание таких швов осуществляют нагнетанием в шов цементационного раствора, то качественная цементация зависит и от величины раскрытия и от проникающей способности растворов. Как показывают экспериментальные исследования, полное заполнение шва обычным цементным раствором без добавок возможно при раскрытиях швов более 0,5 мм. При меньших раскрытиях для полного заполнения шва необходимо применять специальные растворы с пластифицирующими добавками или даже суперпластификаторами.
Среднее раскрытие швов на строительстве Красноярской ГЭС составило 1–1,5 мм.; на Саяно-шушенской 1,5–3,0 мм.
Раскрытие швов зависит от температурного режима блоков, а, следовательно, от сезона укладки. Поскольку разогрев бетонных блоков, укладываемых в летний период, больше, чем блоков, укладываемых в зимний период, то и соответственно раскрытие летних швов больше, чем зимних, и их легче цементировать.
Нагнетание цементного раствора в шов осуществляется через специальную систему труб с выпусками, закладываемыми в бетон при бетонировании плотины. Выпуски должны располагаться равномерно, чтобы обеспечить подачу раствора во все части шва. Для обеспечения равномерного заполнения шва и возможности создания давления при нагнетании раствора омоноличиваемые швы делят на отдельные участки на так называемые карты цементации. Карты цементации, находящиеся на одном уровне по всей длине плотины, образуют ярус цементации (рис.16.З).
Рис. 16.3. Схема разбивки межстолбчатых швов на ярусы и карты цементации
I – секции плотины; 2 – межстолбчатые швы; 3 – ярус цементации; 4 – карта цементации; 5 – уплотнение по контуру карты
По контуру каждой карты устанавливают шпонки – уплотнения. Шпонки выполняют из различных материалов: металлических листов, синтетических материалов, резины, дерева.
Длина карты цементации обычно равна ширине секции. Высоту карты выбирают из условия отсутствия растягивающих напряжений в столбах от давления раствора при нагнетании более 0,1 МПа. По опыту высота ярусе колеблется в пределах 8–20 м., площадь карты 80–600 м² (табл. 16.1).
Таблица 16.1. Размеры карт цементации на построенных плотинах
Наименование гидроузла |
Высота плотины, м |
Тип плотины |
Высота яруса цементации, м |
Площадь карты цементации,м² |
Братская ГЭС Красноярская ГЭС Усть-Илимская ГЭС Ланджанурская ГЭС Чиркейская ГЭС Ингурская ГЭС Шаста (США) Глен-Каньон Боулдер |
127 121 100 67 230 271,5 181 216 226 |
Гравитационная То же То же Арочная То же То же Гравитационная То же То же |
9 9–12 15 12 13 15 15 15 15 |
130–200 100–180 165 80 450 200–300 225 До 600 225 |
Все карты оборудуются трубной цементационной системой с выпусками для подачи цементного раствора. Система включает подводящий и отводящий коллекторы, систему разводящих труб – питателей, цементационные выпуски и воздухоотводящую трубу (рис. 16.4). Число выпусков определяется из расчета 3–6 кв. м на один выпуск. Применяют различные конструкции выпусков (рис. 16.5, а, б, в). Наибольшее применение при цементации швов получили точечные тарельчатые выпуски однократного действия.
Рис.16.4. Схема трубной цементационной системы
I – подводящий коллектор; 2 – питатели; 3 – выпуски; 4 – воздухоотводящая штраба; 5 – шпонки; 6 – отводящий коллектор; 7 – цементируемые швы
В случае если первичная цементация проходила при более высоких температурах по сравнению с требуемыми, предусматривают вторичную цементацию. Для этого применяют специальные выпуски с автономной системой труб, позволяющие производить промывку этой системы после первичной цементации (рис. 16.5, в, г).
Рис. 16.5. Схемы цементационных выпусков (клапанов): а, б – выпуски для первичной цементации; в, г – выпуски для вторичной цементации (а – тарельчатый; б – линейный; в – типа «капитен»; г – с резиновым клапаном (Гидроспецстрой))
I – крышка; 2 – обмазка цементным раствором; 3 – тройник; 4- питательная труба; 5 – хомут; 6 – резиновый клапан; 7 – шпилька; 8 – фланец корпуса; 9 – треугольный короб; 10 – цементируемый шов
Возможно и совмещение первичной и вторичной систем цементации, но это не всегда возможно, так как первичная цементация производится при значительных раскрытиях швов с применением густых растворов, которые могут засорить трубы и клапаны.
Технология цементации. Перед проведением инъекции производят промывку системы, водонасыщение бетона со стороны шва и гидравлическое опробование. Промывку трубной цементационной системы осуществляют через отводящий коллектор сверху вниз. Воздухоотводящую трубку промывают нагнетанием воды через подводящий коллектор. Промывку ведут до полного осветления вытекающей из трубы воды. При гидравлическом опробовании определяют общее водопоглощение шва и утечки при разных режимах движения, расход воды из воздухоотводящей штрабы, который характеризует проходимость шва.
Показатель хорошей проходимости шва – расход через воздухоотводящую штрабу не менее 30 л/мин. Опробование начинают с нагнетания воды при давлении 0,5 – 0,7 от допустимого, увеличивая далее ступенями по 0,1 – 0,2 МПа. Продолжительность опробования не менее 30 мин. Нагнетание раствора начинают не позднее 12 ч после промывки.
Раствор приготовляют на стационарных и передвижных установках. Для повышения проникающей способности в раствор добавляют пластификаторы. Цементацию обычно начинают с жидких растворов при В/Ц = 5:1. Циркуляцию раствора продолжают до выравнивания плотности нагнетаемого раствора и раствора, выходящего из воздухоотвода, после чего переходят на следующую ступень густоты раствора, и так постепенно сгущают его до конечной консистенции, которая обычно составляет 1:0,6. При омоноличивании плотины Братской ГЭС применялись следующие консистенции: В/Ц = 5:1, 3:1, 2:1, 1:1, 0,8:1, 0,6:1. На строительстве Красноярской ГЭС – 5:1, 1:1, 0,8:1, 0,6:1. Нагнетают раствор до достижения отказа или конечной консистенции. За отказ принимают момент, когда расход раствора не превышает 1 л/мин. В этот период обычно прекращается выход раствора через воздухоотводящую трубу. Далее производят еще сгущение раствора и опробование его в течение 10-15 мин.
Очередность омоноличивания швов по профилю плотины определяют по принципу от низового столба – к верховому и снизу вверх. Инъекция может осуществляться как раздельно по каждой карте, так и по групповой схеме. Более качественная цементация имеет место при раздельной схеме. Недостатки групповой – в наличии разных раскрытий швов, что требует разной технологии (давлений) и составов растворов.
Цементационное оборудование обычно размещают в дренажных и инспекционных галереях плотин или в специальных галереях. Растворные узлы располагают в галереях через 150 – 200 м по длине плотины, а при облегченных плотинах – в полостях.
В процессе цементации необходимо строго соблюдать технологический режим, следить за допустимыми давлениями. Для этого швы снабжают соответствующей контрольно-измерительной аппаратурой (КИА) в виде щелемеров, тензометров и др.
Для улучшения условий проходимости шва и соответственно качества цементации предусматривают предварительное дополнительное его раскрытие до допустимых размеров путем повышения давления при цементации.
Работы по омоноличиванию очень трудоемки и продолжительны по времени. Например, трудозатраты на плотине Красноярской ГЭС составили 0,4 чел/дня на 1 м² при общей площади 280000 м², что требовало около трех лет при численности бригады 100 человек.
Контроль качества омоноличивания. Основным показателем качества омоноличивания является соответствие напряженного состояния тела плотины расчетным проектным предпосылкам. Однако прямая проверка этого критерия возможна только после наполнения водохранилища. Поэтому для оценки качества применяют косвенные методы, заключающиеся в контроле выдерживания всех технологических требований на всех этапах цементации, особенно температурного режима в омоноличиваемых столбах и блоках и проходимости системы при конкретных раскрытиях шва.
В период цементации особенно важен контроль за расходом и плотностью раствора, подаваемого в шов, и раствора, выходящего из воздухоотводной трубы. По замеренным значениям плотности определяют водоцементное отношение
,
(16.2)
где
и
– плотности раствора и цемента. Результаты
цементации обычно характеризуют
общей массой израсходованного цемента
на 1 м² площади шва. По опыту этот расход
составляет в среднем 5–10 кг/м² (Братская
плотина – 7,7–7,8 кг/м², Гранд-Диксан
5,7–10,8 кг/м²).
Для конечного контроля качества проходят контрольные скважины, подсекающие зацементированные швы в различных зонах с отбором и испытанием кернов. В результате определяют сплошность цементации, прочность контакта и водопроницаемость.