
- •1) Поясніть залежність процесу дифузії від температури;
- •2) Поясніть як залежить глибина проникнення домішок у напівпровідник під час дифузії від тривалості та температури проведення дифузії;
- •3) Запишіть та поясніть закони Фіка;
- •5) Дайте визначення коефіцієнту дифузії, прокоментуйте його залежність від температури та матеріалу;
- •6) Поясніть вплив дифузії на точність виготовлення компонентів мікросхем. Що таке гранична розчинність домішок в кремнії?
- •7) Поясніть формулу, що описує розподіл концентрацій домішок в напівпровіднику після двостадійної дифузії:
- •8) Опишіть дифузію з необмеженого джерела (етап загонки домішок). Допоміжні формули:
- •9) Опишіть дифузію з обмеженого джерела (етап розгонки домішок). Допоміжні формули:
- •10) Для етапів загонки і розгонки намалюйте графіки залежності концентрації домішок в напівпровіднику від глибини та від часу дифузії. Поясніть чому графіки так виглядають;
- •11) Намалюйте інтегральний резистор на основі базової області в розрізі і в плані. Опишіть кожен компонент такого резистора.
- •12) Намалюйте інтегральний резистор на основі емітерної області в розрізі і в плані. Опишіть кожен компонент такого резистора.
- •13) Виконайте порівняльний аналіз інтегральних резисторів на основі емітерної та базової областей. Як визначити питомий поверхневий опір, якщо відомий питомий об’ємний опір?
- •14) Опишіть методику розрахунку інтегрального резистора;
- •15) Чим обумовлена похибка опору інтегрального резистора? Поясніть кожну складову цієї похибки.
- •18) Виконайте порівняльний аналіз інтегральних дифузійних та мдн конденсаторів;
- •19) Поясніть як залежить ємність інтегрального дифузійного конденсатора від концентрацій домішок в шарах-обкладках та від напруги, прикладеної до такого конденсатора;
- •20) Напишіть та поясніть формулу розрахунку ємності інтегрального дифузійного конденсатора;
- •21) Напишіть та поясніть формулу розрахунку ємності інтегрального мдн конденсатора;
- •22) Поясніть від чого залежить пробивна напруга інтегрального дифузійного та мдн конденсаторів. Поясніть чому на інтегральні дифузійні конденсатори потрібно подавати зворотне зміщення;
- •23 ) Чому по мірі просування від емітерної області до колекторної, питома ємність дифузійних конденсаторів зменшується, а пробивна напруга збільшується?
- •28) Намалюйте інтегральний багатоемітерний n-p-n транзистор в розрізі і в плані. Поясніть елементи його структури.
- •29) Поясніть ефект витіснення току емітера та особливості конструкції потужних транзисторів;
- •30) Намалюйте інтегральний p-n-p транзистор в розрізі і в плані. Поясніть елементи його структури.
- •31) Поясніть принцип функціонування та призначення транзистора Шотткі. Намалюйте такий транзистор в розрізі.
- •32) Поясніть принцип функціонування діода Шотткі.
- •33) Поясніть принцип функціонування біполярного транзистора;
- •Коэффициенты усиления биполярного транзистора
- •35) Від яких факторів залежить пробивна напруга переходу колектор-емітер в дифузійному інтегральному транзисторі, виготовленому за планарною технологією?
- •36) Поясніть формули та величини, які входять в ці формули:
- •38) Поясніть наведені нижче залежності:
- •39) Поясніть формули та величини, які входять в ці формули:
- •40) Поясніть формули та величини, які входять в ці формули:
- •41) Поясніть формули та величини, які входять в ці формули:
- •42) Поясніть які характеристики інтегрального біполярного транзистора залежать від товщини бази та характер цієї залежності;
- •43) Змістовно поясніть відмінності між дрейфовими та бездрейфовими транзисторами (відмінності у конструкції та у процесах, що протікають в базі);
- •44) Поясніть формули та величини, які входять в ці формули:
- •45) Частотні властивості транзистора. Пояснити які параметри транзистора залежать від частоти і який характер цієї залежності;
33) Поясніть принцип функціонування біполярного транзистора;
Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам - большая площадь перехода коллектор-база увеличивает вероятность экстракции неосновных носителей заряда в коллектор и т.к. в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора ), поэтому биполярный транзистор общего вида является несимметричным устройством
В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
В n-p-n транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.
Режимы работы:
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)
Инверсный активный режим
Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).
Режим отсечки
В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
34) Поясніть такі терміни, що стосуються біполярних транзисторів, як: “коефіцієнт інжекції”, “коефіцієнт переносу”, “коефіцієнт підсилення для схеми з загальною базою”, “коефіцієнт підсилення для схеми з загальним емітером”. Бажано записати та пояснити формули для цих коефіцієнтів.
коэффициент
инжекции эмиттера коэффициент переноса