
- •Гоу впо российский государственный торгово-экономический университет
- •080401 «Товароведение и экспертиза товаров
- •Методические указания к выполнению самостоятельной работы. Требования к оформлению контрольных заданий и разъяснения по использованию таблиц.
- •Критерии оценивания индивидуальных заданий
- •2. Строение ядра
- •Примеры решения задач
- •3. Спин ядра и его магнитный момент
- •4. Ядерные силы
- •5. Радиоактивность
- •6. Закон радиоактивного распада
- •7. Метод определения периода полураспада радиоактивного изотопа
- •8. Примеры решения задач
- •9. Активность радиоактивного препарата
- •10. Примеры решения задач
- •11. Радиоактивный распад
- •12. Примеры решения задач
- •13. 3Акон ослабления пучка моноэнергетического γ – излучения или β – частиц
- •14. Энергия связи ядра. Дефект массы ядра
- •15. Примеры решения задач
- •16. Ядерные реакции
- •17. Примеры решения задач
- •18. Энергия ядерной реакции
- •19. Примеры решения задач
- •20. Реакция деления тяжелых ядер
- •21. Биологическое действие радиоактивных излучении
- •22. Доза излучения
- •23. Примеры решения задач
- •24. Элементарные частицы и современная физическая картина мира
- •25. Классификация элементарных частиц
- •26. Лептоны. Адроны. Кварки
- •28. Античастицы
- •29. Цепная реакция
- •30. Условия термоядерной реакции
- •31. Атомные электростанции
- •32. Методы регистрации заряженных частиц
- •33. Классификация счетчиков
- •34. Разрешающая способность. Мертвое время. Эффективность счетчика.
- •35. Кристаллические счетчики
- •36. Сцинтилляционные методы.
- •37. Счётчик Гейгера.
- •38. Камера Вильсона.
- •39. Пузырьковая камера
- •40. Примеры решения задач
- •41. Указания к решению задач
- •42. Задачи для контрольных и самостоятельных работ
- •Контрольные вопросы
- •Приложения
- •Греческий алфавит
- •2. Множители и приставки для образования десятичных кратных и дольных единиц и их наименования
- •3. Некоторые физические постоянные (округленные значения)
- •4. Масса, заряд и энергия покоя некоторых частиц
- •Атомных масс
- •6. Массы атомов легких изотопов
- •7. Относительные атомные массы некоторых элементов
- •8. Масса и заряд некоторых частиц
- •9. Периоды полураспада рдиоактивных изотопов
- •10. Некоторые физические постоянные (округленные значения)
- •11. Периоды полураспада, вид распада и энергия излучения основных радионуклидов аварийного чернобыльского выброса в 1986 г.
- •12. Периоды полураспада, вид распада и энергия излучения основных радионуклидов, индуцированных космическим излучением
- •13. Линейный (µ, см-1) коэффициент поглощения гамма-излучения для воздуха, воды, алюминия, железа и свинца при различных значениях энергии фотонов
- •14. Биологические тб и эффективные тэфф периоды полувыведения радионуклидов цезия и стронция из некоторых органов взрослого человека
- •15. Естественная удельная бета-активность Некоторых пищевых продуктов, обусловленных содержанием 19к40
- •16. Масса m 0 и энергия покоя w 0 некоторых частиц
- •17. Период полураспадаТ1/2. Период биологического выведения тб некоторых радионуклидов при воз- действии их излучения на критический орган.
- •18. Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения
- •19. Толщина защиты из бетона (∆, в см) при плотности
- •Использованная литература
- •Содержание
- •6 44009, Омск, ул. 10 лет Октября, 195, корп. 18
37. Счётчик Гейгера.
Это устройство представляет собой стеклянную трубку, наполненную газом, в которую введены два электрода. Одни является цилиндрической поверхностью, другой тонкой проволокой, проходящей с одного торца к другому, по оси цилиндра.
К электродам подводится напряжение. При пролёте через такую трубку заряженной Частицы, молекулы газа ионизируются, образовавшиеся ионы разгоняются электрическим полем и в свою очередь ионизируют другие молекулы, в результате чего образуется лавина ионов. В этот момент по электрической цепи, в которую включена трубка, проходит ток в виде импульса. Процесс повторяется при каждом пролёте частицы, и электронный прибор регистрирует и считает число пролетевших частиц. Счётчик Гейгера играет большую роль при изучении радиоактивности, радиоактивного заражения, при измерении доз, полученных в заражённых зонах.
Рисунок 37.1. Схема стеклянного счётчика Гейгера - Мюллера:
1 - герметически запаянная стеклянная трубка;
2 - катод (тонкий слой меди на трубке из нержавеющей стали);
3 - вывод катода; 4 - анод (тонкая натянутая нить).
38. Камера Вильсона.
Камера Вильсона (рис. 38.1) была изобретена шотландским физиком Ч.Вильсоном в 1910–1912 гг. и являлась одним из первых приборов для регистрации заряженных частиц. В основе действия камеры лежит свойство конденсации капелек воды на ионах, образовавшихся вдоль трека (следа) частицы. Появление камеры Вильсона не только позволило увидеть треки частиц, но и сделало возможным «распознавание» этих частиц (заряд, энергия), а также дало много нового материала, который послужил основанием для некоторых важных открытий.
Рисунок 38.1.
Принцип работы камеры Вильсона довольно прост. Известно, что если парциальное давление водяного пара превышает его давление насыщения при данной температуре, то может образоваться туман и выпасть роса. Показатель перенасыщения S – это отношение парциального давления к давлению насыщения при данной температуре. Для самопроизвольной конденсации пара в чистом воздухе нужны большие показатели перенасыщения (S ~ 10), но если в воздухе присутствуют посторонние частицы, способные служить центрами конденсации, то образование микрокапелек может начаться и при меньших значениях S.
Частицы, образующиеся при радиоактивном распаде, обладают достаточной энергией для ионизации большого числа молекул газа, составляющего среду. Образующиеся при пролете частицы ионы эффективно притягивают молекулы воды вследствие несимметричности распределения заряда в этих молекулах. Таким образом, частица, высвободившаяся при радиоактивном распаде, пролетая перенасыщенную среду, должна оставлять за собой след из капелек воды. Его можно увидеть и заснять на фотопластинку в камере Вильсона.
Камера Вильсона представляет собой цилиндр, заполненный парами спирта и воды. В камере имеется поршень, при быстром опускании которого вследствие адиабатического расширения температура падает, и пары приобретают способность легко конденсироваться (показатель перенасыщения 1 < S < 10). Влетающие через отверстие в камере частицы вызывают ионизацию молекул среды, то есть появление туманного следа – трека частицы. Вследствие того, что частицы обладают разными энергиями, размерами и зарядами, треки от различных частиц выглядят по-разному. Например, трек электрона выглядит тоньше и прерывистей, чем трек, полученный при пролете значительно более массивной альфа-частицы.