
- •Гоу впо российский государственный торгово-экономический университет
- •080401 «Товароведение и экспертиза товаров
- •Методические указания к выполнению самостоятельной работы. Требования к оформлению контрольных заданий и разъяснения по использованию таблиц.
- •Критерии оценивания индивидуальных заданий
- •2. Строение ядра
- •Примеры решения задач
- •3. Спин ядра и его магнитный момент
- •4. Ядерные силы
- •5. Радиоактивность
- •6. Закон радиоактивного распада
- •7. Метод определения периода полураспада радиоактивного изотопа
- •8. Примеры решения задач
- •9. Активность радиоактивного препарата
- •10. Примеры решения задач
- •11. Радиоактивный распад
- •12. Примеры решения задач
- •13. 3Акон ослабления пучка моноэнергетического γ – излучения или β – частиц
- •14. Энергия связи ядра. Дефект массы ядра
- •15. Примеры решения задач
- •16. Ядерные реакции
- •17. Примеры решения задач
- •18. Энергия ядерной реакции
- •19. Примеры решения задач
- •20. Реакция деления тяжелых ядер
- •21. Биологическое действие радиоактивных излучении
- •22. Доза излучения
- •23. Примеры решения задач
- •24. Элементарные частицы и современная физическая картина мира
- •25. Классификация элементарных частиц
- •26. Лептоны. Адроны. Кварки
- •28. Античастицы
- •29. Цепная реакция
- •30. Условия термоядерной реакции
- •31. Атомные электростанции
- •32. Методы регистрации заряженных частиц
- •33. Классификация счетчиков
- •34. Разрешающая способность. Мертвое время. Эффективность счетчика.
- •35. Кристаллические счетчики
- •36. Сцинтилляционные методы.
- •37. Счётчик Гейгера.
- •38. Камера Вильсона.
- •39. Пузырьковая камера
- •40. Примеры решения задач
- •41. Указания к решению задач
- •42. Задачи для контрольных и самостоятельных работ
- •Контрольные вопросы
- •Приложения
- •Греческий алфавит
- •2. Множители и приставки для образования десятичных кратных и дольных единиц и их наименования
- •3. Некоторые физические постоянные (округленные значения)
- •4. Масса, заряд и энергия покоя некоторых частиц
- •Атомных масс
- •6. Массы атомов легких изотопов
- •7. Относительные атомные массы некоторых элементов
- •8. Масса и заряд некоторых частиц
- •9. Периоды полураспада рдиоактивных изотопов
- •10. Некоторые физические постоянные (округленные значения)
- •11. Периоды полураспада, вид распада и энергия излучения основных радионуклидов аварийного чернобыльского выброса в 1986 г.
- •12. Периоды полураспада, вид распада и энергия излучения основных радионуклидов, индуцированных космическим излучением
- •13. Линейный (µ, см-1) коэффициент поглощения гамма-излучения для воздуха, воды, алюминия, железа и свинца при различных значениях энергии фотонов
- •14. Биологические тб и эффективные тэфф периоды полувыведения радионуклидов цезия и стронция из некоторых органов взрослого человека
- •15. Естественная удельная бета-активность Некоторых пищевых продуктов, обусловленных содержанием 19к40
- •16. Масса m 0 и энергия покоя w 0 некоторых частиц
- •17. Период полураспадаТ1/2. Период биологического выведения тб некоторых радионуклидов при воз- действии их излучения на критический орган.
- •18. Мощность эквивалентной дозы, используемая при проектировании защиты от внешнего ионизирующего излучения
- •19. Толщина защиты из бетона (∆, в см) при плотности
- •Использованная литература
- •Содержание
- •6 44009, Омск, ул. 10 лет Октября, 195, корп. 18
35. Кристаллические счетчики
По принципу действия наиболее близки к газоразрядным кристаллические счетчики проводящего типа. Если пространство между электродами газоразрядного прибора заполнить не газом, а кристаллическим диэлектриком или полупроводником, то при прохождении ионизирующей частицы через него появляется импульс тока.
Выделяют два типа кристаллических счетчиков, имеющих различный механизм действия: счетчики, работающие как фотосопротивления, и счетчики, работающие как фотодиоды. Можно считать, что действие ионизирующей частицы на первый тип подобно действию квантов света на фотосопротивление – при освещении ток через него увеличивается. Второй тип счетчиков представляет собой плоскостной диод из высокоомного монокристалла германия.
Пусть со стороны n-германия попадает α-частица. В небольшом слое Δ толщиной 10-20 мк она затормозится, полностью отдав свою энергию на образование пар электрон-дырка. Дырки через запорный слой легко проходят, и возникает ток в замкнутой цепи кристалл - сопротивление R - батарея.α Так как при прохождении тока через фотодиод на внешнем сопротивлении нагрузки падает почти все напряжение источника тока, удается получить достаточно большие импульсы. Следует также отметить, что такие счетчики имеют «темновой ток», т.е. ток в отсутствии облучения, его величина достигает нескольких микроампер.
Отметим достоинства и недостатки кристаллических счетчиков.
Основными преимуществами являются:
Возможность регистрации сильнопроникающего жесткого излучения счетчиками малых размеров благодаря большой тормозной способности;
Высокие скорости счета (до 100000имп/сек) благодаря крутому фронту импульса;
Пропорциональность между высотой импульса и энергией частицы, что позволяет различать частицы по энергиям , как в пропорциональных счетчиках;
Возможность детектировать частицы и гамма-лучи с большей эффективностью, чем при использовании газоразрядных счетчиков.
Основным недостатком кристаллических счетчиков является накопление пространственного заряда, создаваемого захваченными в ловушки электронами и дырками, что приводит с течением времени к уменьшению высоты импульса и скорости счета.
36. Сцинтилляционные методы.
Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа.
Возникновение кратковременных вспышек света (сцинтилляций) известно давно. Существует ряд веществ (бензол, нафталин, сернистый цинк с серебром и т.д.), которые дают световую вспышку (сцинтилляцию) при прохождении через них ионизирующего излучения. Эту вспышку можно зарегистрировать как просто глазом, так и соответствующим прибором, преобразующим световой сигнал в электрический. Начиная с 1944 г. световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ). Позже для этих целей стали использовать также светодиоды. Сцинтиллятор может быть органическим (кристаллы, пластики или жидкости) или неорганическим (кристаллы или стекла). Используются также газообразные сцинтилляторы. В качестве органических сцинтилляторов часто используются антрацен (C14H10), стильбен (C14H12), нафталин (C10H8). Жидкие сцинтилляторы обычно известны под фирменными именами (например NE213). Пластиковые и жидкие сцинтилляторы представляют из себя растворы органических флуоресцирующих веществ в прозрачном растворителе. Например, твердый раствор антрацена в полистироле или жидкий раствор р-терфенила в ксилоле. Концентрация флуоресцирующего вещества обычно мала и регистрируемая частица возбуждает в основном молекулы растворителя. В дальнейшем энергия возбуждения передается молекулам флуоресцирующего вещества. В качестве неорганических кристаллических сцинилляторов используются ZnS, NaI(Tl), CsI, Bi4Ge3O12 (BGO) и др. В качестве газовых и жидких сцинтилляторов используют инертные газы (Xe, Kr, Ar, He) и N.
Счетчик имеет два основных элемента: сцинтиллятор и фотоумножитель, преобразующий эти слабые вспышки света в электрические импульсы, которые усиливаются внутри этого же фотоумножителя в миллионы раз и более (рис.36.1.)
Рисунок 36.1.
Действие сцинтилляционного счетчика происходит следующим образом. Частица попадает в сцинтиллятор и взаимодействуют с атомами плотной среды сцинтиллятора. При этом некоторое количество атомов вещества, составляющего сцинтиллятор, переходит в возбужденное состояние. Обратный переход атомов в нормальное состояние сопровождается импусканием света – люминисценцией. Различают два вида люминисценции – флуорисценцию и фосфоресценцию. В первом случае высвечивание атома происходит почти мгновенно, во втором – возбужденные молекулы находятся в метастабильном состоянии неопределенное время.
Достоинства сцинтилляционных счетчиков:
Высокая чувствительность ко всем видам ядерных излучений
Большая разрешающая способность
Способность различать частицы по энергиям и измерять ее.
Таким образом, сцинтилляционный счетчик, соединяя в себе достоинства пропорционального счетчика и счетчика Гейгера-Мюллера, обладает при этом превосходящей их эффективностью и разрешающей способностью.