Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теор.ч.Ус.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.63 Mб
Скачать

1.4. Метод контурных токов, узловых потенциалов

Описанные ниже методы применимы для цепей постоянного и переменного тока.

Метод контурных токов

Метод контурных токов позволяет уменьшить количество уравнений системы до числа - число уравнений (сост. по II закону Кирхгофа). Если в цепи некоторые узлы соединяются ветвями, не меняющими проводимость (они могут содержать источники тока), то число уравнений К, составляемых по методу контурных токов уменьшается на NT. Метод основывается на том свойстве, что ток в любой ветви цепи может быть представлен в виде алгебраической суммы независимых контурных токов, протекающих в этой ветви. При пользовании методом сначала выбирают и обозначают независимые контурные токи (по любой ветви должен протекать хотя бы один выбранный ток). Далее согласно II закону Кирхгофа получается система из n линейных уравнений.

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Сущность метода узловых потенциалов (МУП) заключается в том, что сначала определяются потенциалы всех узлов схемы, а токи ветвей, соединяющих узлы, определяются с помощью законов Ома. При составлении уравнений по МУП сначала полагают равным нулю потенциал какого-либо узла, для оставшихся составляют уравнения по I-му закону Кирхгофа. Если в цепи некоторые узлы соединяются ветвями, не имеющими сопротивлений (они могут содержать источники напряжений), то число KI уравнений, составленных по МУП, уменьшается на Nн (число ветвей с нулевыми сопротивлениями). При этом следует помнить, что в случае, когда между двумя узлами имеются несколько параллельных ветвей с источниками ЭДС (или без них), их можно привести к одной эквивалентной схеме.

Это представление эквивалентной схемой параллельных ветвей с источниками ЭДС даёт право считать, что между любой парой узлов включена только одна ветвь.

1.5. Мощность цепи постоянного тока. Баланс мощностей.

Работа, совершаемая силами электрического поля при протекании тока, выражается следующим образом:

. (1.9)

Работа измеряется в джоулях (Дж). Работа, совершаемая в единицу времени, называется мощностью:

. (1.10)

Единицей измерения мощности является ватт (Вт=Дж/с). Для пассивного участка (рис. 1.9) имеем: U = RI. Умножая на величину тока, получим: UI = RI2, Pпост= UI, Pпотр= RI2.

Рисунок 1.9

На пассивном участке вся поступающая мощность выделяется в виде тепла. Этот процесс преобразования электрической энергии в тепловую необратим.

Рпост= Рпотр (1.11)

Баланс мощностей.

Для любой электрической цепи суммарная мощность Ри, развиваемая источниками электрической энергии (источниками тока и ЭДС), равна суммарной мощности Рп, расходуемой потребителями (резисторами).

РR = U×I = R∙I 2 = U 2/R – мощность, рассеиваемая резистором.

РЕ = ±Е∙I  – мощность источника ЭДС.

РJ = ± UJ ×J – мощность источника тока.

Мощности, рассеваемые резисторами, всегда положительны, в то время как мощности источников электрической энергии, в зависимости от соотношения направлений падения напряжения и тока в них, могут иметь любой знак. Если направление протекания тока через источник противоположно направлению падения напряжения на нём, то мощность источника положительна, т.е. он отдаёт энергию в электрическую цепь. В противном случае мощность источника отрицательна, и он является потребителем электрической энергии. Следует заметить, что направление падения напряжения всегда противоположно направлению ЭДС, поэтому для источника ЭДС условием положительной мощности является совпадение направлений ЭДС и тока.