Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Задания для курсовой работы_В.В.В..doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
448.51 Кб
Скачать

Задания для курсовой работы

Задание 9

Алгоритм размещения конструктивных модулей на монтажной коммутационной плоскости (мкп) методом слепого поиска

Замечание. Обозначим n – число размещаемых км; m – число позиций на мкп.

Алгоритм.

  1. Пронумеровать все возможные позиции для размещения КМ в порядке от 1 до m.

  2. С использованием датчика случайных чисел с равномерным распределением генерировать n случайных чисел (по числу размещаемых модулей) в интервале (1, m).

  3. Разместить КМ в позициях, номера которых выбраны случайно в п.2. Вычислить значение целевой функции F.

  4. Если это первая итерация, то полученное значение F запоминается как Fопт. При выполнении всех последующих итераций полученное значение F запоминается как Fопт только в том случае, если оно оказывается меньше полученного на предыдущей итерации.

  5. Запомнить полученное размещение КМ.

  6. Проверяется условие, все ли элементы размещены. Если оно не выполняется, то осуществляется переход к п.2, в противном случае осуществляется переход к п.7.

  7. Конец работы алгоритма.

Задания для курсовой работы

Задание 10

Алгоритм размещения конструктивных модулей в мкп решением задачи о назначениях

Замечание 1. Обозначим n – число размещаемых конструктивных модулей; m – число позиций на МКП. Перед работой алгоритма необходимо выполнить начальное размещение КМ в МКП одним из известных алгоритмов либо вручную.

Замечание 2. Внутренне устойчивым множеством Sv вершин графа G называется максимальное количество несмежных вершин графа.

Алгоритм.

  1. Выполнить начальное размещение n конструктивных модулей заданной схемы в m позиций МКП.

  2. Сформировать очередное внутренне устойчивое множество Sv вершин для модели графа заданной схемы устройства.

  3. Конструктивные элементы, соответствующие вершинам множества Sv, удалить с позиций МКП.

  4. Для каждого из КМ, соответствующих вершинам множества Sv, определяем эффективность его размещения на каждой из m-n+v свободных позиций, то есть суммарную длину связей КМ с оставшимися размещенными в МКП модулями.

  5. Решаем задачу о назначении КМ, соответствующих вершинам множества Sv, в новых позициях из числа m-n+v свободных.

  6. Вычисляем эффективность полученного размещения.

  7. Если ещё не все элементы размещены, то переходим к п.2.

  8. Конец алгоритма.

Задания для курсовой работы Задание 11 Последовательный алгоритм размещения конструктивных модулей в мкп по максимальной связности

Замечание. Обозначим: E – множество элементов, подлежащих размещению Ек – подмножество уже размещенных элементов – подмножество еще не размещенных элементов; S – множество всех позиций  подмножество еще не занятых позиций Sк – подмножество занятых позиций.

Алгоритм.