
- •Классификация приводов.
- •2.Характеристики и режимы работы асинхронных двигателей. Механическая и электромеханическая характеристики.
- •3.Регулирование скорости асинхронных двигателей в приводах технологических машин помощь введения резисторов в статорные и роторные цепи.
- •4.Регулирование скорости асинхронных двигателей (ад) в приводах технологических машин изменением напряжения подводимого к его статору.
- •6.Регулирование скорости асинхронного двигателя (ад) в приводах технологических машин изменением пар его полюсов.
- •7. Регулирование скорости асинхронного двигателя в каскадных схемах его включения в приводах технологических машин.
- •9.Рекуперативное торможение асинхронного двигателя в приводах технологических.Рекуперативное торможение асинхронного двигателя
- •10. Динамическое торможение асинхронного двигателя в приводах технологических машин.
- •35. Общая оценка синхронных электроприводов
- •36. Способы пуска синхронных двигателей
- •Пуск синхронных двигателей
- •38. Механическая и угловая характеристики синхронного двигателя
- •40. Вентильно-индукторный электропривод
- •Особенности конструкции индукторной машины
- •7.1. Электропривод с механическим соединением валов двигателей
- •42 Вопрос
- •7.2. Электропривод с механическим дифференциалом
- •43 Вопрос7.3. Электропривод с электрическим валом
- •44 Вопрос
- •45 Вопрос
- •51. Теоретические циклы двс в приводах тм. Термический кпд.
- •52. Действительные циклы двс в приводах тм. Индикаторный и эффективный кпд.
- •53. Классификация и принцип действия гидроприводов тм.
- •5. По типу приводящего двигателя гидроприводы могут быть с электроприводом, приводом от двс, турбин и т.Д.
- •54. Рабочие жидкости в гидроприводах тм. Требования, свойства рабочих жидкостей.
- •60. Поршневые насосы и гидромоторы в гидроприводах технологических машин.
- •60. Поршневые насосы и гидромоторы в гидроприводах технологических машин.
- •Борьба с пульсацией
- •Применение
- •61. Радиальные роторнопоршневые насосы и гидромоторы в гидроприводах тм
- •62. Аксиально роторнопоршневые насосы и гидромоторы в гидроприводах тм
- •63. Гидроцилиндры в гидроприводах тм
- •Виды гидроцилиндров Гидроцилиндры одностороннего действия
- •Гидроцилиндры двустороннего действия
- •Телескопические гидроцилиндры
- •[Дифференциальные гидроцилиндры
- •Область применения
- •64. Основные характеристики насосов в гидроприводах тм
- •65. Основные характеристики гидродвигателей в гидроприводах тм
- •Функции гидропривода
- •Виды гидроприводов
- •Гидропривод с разомкнутой системой циркуляции
- •По источнику подачи рабочей жидкости Насосный гидропривод
- •Магистральный гидропривод
- •Количество степеней свободы гидросистем
- •Область применения
- •Преимущества
- •Недостатки
- •Перспективы развития
- •66. Устройства регулирования производительности насосов в гидроприводах тм. Описание изобретения
- •Формула изобретения
- •67. Проектирование объемных гидроприводов. Исходные данные, определение производительности, выбор давления.
- •68. Гидроприводы поступательного движения на примере соответствующей по специализации тм. Схема, принцип действия, параметры. Гидропривод поступательного движения
- •Гидроцилиндры одностороннего действия
- •[Править] Гидроцилиндры двустороннего действия
- •[Править] Телескопические гидроцилиндры
- •[Править] Дифференциальные гидроцилиндры
- •[Править] Область применения
- •69. Гидропривод вращательного движения на примере соответствующей по специализации тм. Схема, принцип действия. Гидропривод вращательного движения
- •Область применения
- •Преимущества
- •Недостатки
- •70. Гидродинамические передачи в приводах тм. На примере технологической машины по соответствующей специализации.
36. Способы пуска синхронных двигателей
Одним из главных недостатков синхронных двигателей является сложность их пуска в ход. Пуск синхронных двигателей может быть осуществлен при помощи вспомогательного пускового двигателя или путем асинхронного пускаПуск синхронного двигателя при помощи вспомогательного двигателя. Если ротор синхронного двигателя с возбужденными полюсами развернуть другим, вспомогательным двигателем до скорости вращения поля статора, то магнитные полюсы статора, взаимодействуя с полюсами ротора, заставят ротор вращаться далее самостоятельно без посторонней помощи, в такт с полем статора, т. е. синхронно (откуда эти двигатели и получили свое название).
На фиг. 405 показана схема пуска оинхрониого двигателя 1 с помощью вспомогательного асинхронного двигателя 2. Для осуществления пуска необходимо, чтобы число пар полюсов асинхронного двигателя было меньше числа пар полюсов синхронного двигателя, ибо при этих условиях вспомогательный асинхронный двигатель может развернуть ротор синхронного двигателя до синхронной скорости. Порядок пуска синхронного двигателя следующий. Включая рубильник 3, пускают вспомогательный асинхронный двигатель 2, который разворачивает ротор синхронного двигателя 1 до скорости, соответствующей скорости поля статора. Скорость вращения вспомогательного двигателя определяется по тахометру1. Затем, включая рубильник 4 постоянного тока, возбуждают полюсы ротора. Чтобы включить синхронный двигатель в сеть трехфазного тока, его нужно синхронизировать так же, как и при включении синхронного генератора на параллельную работу. Для этого реостатом 5 устанавливают такое возбуждение, чтобы напряжение обмотки статора по вольтметру V было равно напряжению сети, указываемому вольтметром V1.
|
вспомогательный двигатель 2 рубильником 3 можно отключить от сети.
Сложность пуска и необходимость вспомогательного двигателя являются существенными недостатками этого способа пуска синхронных двигателей. Поэтому в настоящее время он применяется редко.
Асинхронный пуск синхронного двигателя. Для осуществления этого способа пуска в полюсных наконечниках полюсов ротора укладывается дополнительная короткозамкнутая обмотка. Так как во время пуска в обмотке возбуждения 1 двигателя наводится большая э. д. с, то по соображениям безопасности она замыкается рубильником 2 на сопротивление 3 (фиг. 406).
При включении напряжения трехфазной сети в обмотку статора 4 синхронного двигателя возникает вращающееся магнитное поле, которое, пересекая короткозамкнутую (пусковую) обмотку, заложенную в полюсных наконечниках ротора, индуктирует в ней токи.
Эти токи, взаимодействуя с вращающимся полем статора, приведут ротор во вращение. При достижении ротором наибольшего числа оборотов (95—97% синхронной скорости) рубильник 2 переключают так, чтобы обмотку ротора включить в сеть постоянного напряжения.
Недостатком асинхронного пуска является большой пусковой ток (в 5—7 раз больший рабочего тока). Пусковой ток вызывает падение напряжения в сети, а это отражается на работе других потребителей. Для уменьшения пускового тока применяют пуск при пониженном напряжении с помощью реактора 2 или автотрансформатора.
В настоящее время применяют почти исключительно асинхронный пуск синхронных двигателей ввиду его простоты и надежности. Существуют также схемы автоматического асинхронного пуска синхронных двигателей.Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через реактор или автотрансформатор.Схема возбуждения синхронного двигателя с глухоподключенным возбудителем (рис. 1.24, а) довольно проста и может применяться в том случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс < 0,4 Мном.Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной. В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление (рис. 1.24, б), чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.
Рис. 1.24. Типовые узлы схем возбуждения синхронного двигателя
Разработаны также системы тиристорного возбуждения. Если пуск производится на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора.
Возможно подключение обмотки возбуждения двигателя к якорю возбудителя последовательно с разрядным сопротивлением (рис. 1.24, в).
Процесс подачи возбуждения синхронному двигателю автоматизируется двумя способами: в функции скорости и в функции тока.
На схеме, приведенной на рис. 1.25, подача возбуждения синхронному двигателю осуществляется с помощью электромагнитного реле постоянного тока КТ (реле времени с гильзой). Катушка реле включается на разрядное сопротивление Rразр через диод VD. При подключении обмотки статора к сети в обмотке возбуждения двигателя наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.
Рис. 1.25. Подача возбуждения синхронному двигателю в функции скорости
При пуске скольжение S = 1. По мере разгона двигателя оно уменьшается и интервалы между выпрямленными полуволнами тока возрастают; магнитный поток постепенно снижается по кривой Ф(t) (рис. 1.26). При скорости, близкой к синхронной, магнитный поток реле успевает достигнуть значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом создает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).
Рассмотрим контроль подачи возбуждения в функции тока с помощью реле тока. При пусковом токе срабатывает реле тока КА (рис. 1.27, а) и размыкает свой контакт в цепи контактора КМ2 (рис. 1.27, б).
Рис. 1.26. График изменения тока и магнитного потока в реле времени КТ
Рис. 1.27. Контроль подачи возбуждения синхронному двигателю в функции тока
При скорости, близкой к синхронной, реле КА отпадает и замыкает свой контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает свой контакт в цепи возбуждения машины и шунтирует резистор Rразр.