
- •О.Ю. Петрова, т.В.Смекалина, о.Л.Хабибулина
- •Учебное пособие
- •Оглавление
- •2. Координаты
- •3. Перемещение
- •4. Время
- •5. Средняя скорость
- •6. Мгновенная скорость
- •7. Ускорение
- •8. Угловой путь
- •10. Угловое ускорение
- •11. Нормальное ускорение
- •12. Тангенциальное ускорение
- •§2. Определения динамики
- •1. Масса
- •2. Сила
- •3. Результирующая сила
- •4. Импульс силы
- •5. Импульс материальной точки
- •6. Импульс системы материальных точек
- •7. Работа
- •8. Мощность
- •9. Энергия
- •10. Потенциальная энергия
- •11. Кинетическая энергия
- •12. Коэффициент полезного действия
- •13. Нормаль к поверхности
- •14. Центр масс
- •15. Сила нормального давления и вес
- •§3. Определения статики
- •1. Момент силы
- •2. Плечо силы
- •2. Сила тяжести
- •3. Закон Гука
- •4. Сила трения
- •5. Первый закон Ньютона
- •6. Второй закон Ньютона
- •7. Третий закон Ньютона
- •8. Закон сохранения энергии. Вечный двигатель первого рода.
- •9. Сила инерции при прямолинейном движении
- •§5. Законы статики
- •2. Выражение времени через среднюю скорость и путь
- •3. Связь мгновенной скорости и постоянного ускорения
- •4. Связь координаты и постоянного ускорения
- •5. Связь линейной и угловой скоростей при равномерном движении по окружности
- •6. Выражение нормального ускорения через линейную и угловую скорости
- •§7. Формулы кинематики и динамики
- •1. Первая космическая скорость
- •§8. Формулы динамики
- •1. Потенциальная энергия вблизи поверхности Земли
- •2. Закон сохранения импульса
- •3. Выражение второго закона Ньютона через изменение импульса материальной точки
- •Глава 4. Модели механики
- •1. Физическое тело, или просто тело
- •2. Материальная точка
- •3. Система отсчета
- •4 . Абсолютно упругий удар
- •5. Абсолютно неупругое соударение
- •2. Объем
- •3. Давление
- •4. Термодинамические параметры
- •5. Термодинамическая система
- •6. Молекулярная единица массы
- •7. Молярная масса
- •8. Число Авогадро
- •9. Масса молекулы
- •10. Количество вещества
- •11. Плотность
- •12. Концентрация
- •13. Теплота
- •14. Внутренняя энергия
- •15. Теплоёмкость
- •16. Удельная теплоёмкость
- •17. Молярная теплоёмкость
- •18. Насыщенный пар
- •19. Относительная влажность
- •20. Термодинамический процесс
- •21. Изотермический процесс3
- •22. Изобарический процесс4
- •23. Изохорический процесс5
- •24. Адиабатический процесс
- •25. Круговой процесс, или цикл
- •26. Цикл Карно
- •27. Коэффициент полезного действия тепловой машины
- •2. Закон Гей-Люссака
- •3. Закон Бойля−Мариотта
- •4. Первое начало термодинамики
- •5. Второе начало термодинамики. Вечный двигатель второго рода
- •6 . Закон Паскаля
- •7. Зависимость давления насыщенного пара от температуры
- •8. Удельная теплоемкость жидкости и газа Формулировки экспериментального закона: удельные теплоемкости жидкостей и газов остаются постоянными в широком диапазоне температур.
- •9. Молярная теплоемкость жидкости и газа Формулировки экспериментального закона: молярные теплоемкости жидкостей и газов остаются постоянными в широком диапазоне температур.
- •10. Удельная теплота плавления
- •11. Удельная теплота парообразования
- •Глава 7. Теоремы термодинамики и гидростатики Формулы §9. Формулы термодинамики
- •1. Уравнение Менделеева−Клапейрона
- •2. Уравнение состояния идеального газа
- •3. Закон Дальтона
- •4. Основное уравнение молекулярно-кинетической теории
- •5. Значение числа Авогадро
- •6. Способы расчета количества вещества
- •7. Внутренняя энергия одноатомного идеального газа. Смысл термодинамической температуры
- •8. Работа в термодинамике
- •9. Работа в изобарическом процессе
- •10. Коэффициент полезного действия цикла Карно
- •11. Формула связи полезной работы с тепловыми энергиями нагревателя и холодильника тепловой машины
- •12. Коэффициент полезного действия реальной тепловой машины (Второе начало термодинамики)
- •13. Связь температурных шкал Кельвина и Цельсия
- •§10. Формулы термодинамики и гидростатики
- •1. Давление столба жидкости или газа
- •2. Сила Архимеда
- •§11. Формулы гидростатики
- •1. Формула гидравлического пресса
- •Глава 8. Модели термодинамики
- •1. Идеальный газ
- •2. Температурная шкала Цельсия
- •3. Равновесный термодинамический процесс
- •2. Пробный заряд
- •3. Заряд электрона
- •4. Физическое поле
- •5. Однородное поле
- •6. Потенциальная энергия заряда
- •7. Потенциал
- •8. Напряженность электрического поля
- •9. Электрическое поле
- •10. Силовая линия напряженности электрического поля
- •11. Эквипотенциальная поверхность
- •12. Электроемкость уединенного проводника
- •13. Взаимная электроемкость проводников
- •§13. Определения постоянного тока
- •1. Постоянный электрический ток
- •2. Электродвижущая сила − эдс
- •3. Сторонние силы
- •4. Напряжение на участке цепи
- •2. Закон Кулона в вакууме или в воздухе
- •3. Закон Кулона в среде
- •4. Результирующая сила Кулона
- •5. Электроемкость уединенного проводника
- •§ 15. Законы постоянного тока
- •1. Закон Ома для однородного участка цепи
- •2. Удельное сопротивление и проводимость проводников
- •3. Температурная зависимость сопротивления проводников Формулировки экспериментального закона: температурная зависимость сопротивления проводников.
- •4. О равномерном протекании постоянного тока по цепи Формулировки экспериментального закона: постоянный ток сохраняет свою величину для любого поперечного сечения проводников в любой точке цепи.
- •2. Вычисление силы по напряженности
- •3. Связь напряженности электрического поля и силы Кулона, действующей на пробник
- •4. Принцип суперпозиции для напряженности электрического поля
- •5. Потенциальная энергия электростатического поля
- •6. Потенциал точечного заряда
- •7. Потенциал суммы точечных зарядов
- •8. Связь разности потенциалов и работы электрических сил
- •9. Связь напряженности и потенциала однородного электростатического поля
- •10. Связь силовых линий и эквипотенциальных поверхностей электростатического поля
- •11. Потенциал поверхности уединенного проводника
- •12. Потенциал объема уединенного проводника
- •13. Ёмкость шара
- •14. Поле плоского конденсатора
- •15. Ёмкость плоского конденсатора
- •§17. Формулы постоянного тока
- •1. Закон Джоуля–Ленца
- •3. Сопротивление участка цепи при последовательном соединении проводников
- •4. Сопротивление участка цепи при параллельном соединении проводников
- •5. Ёмкость участка цепи при последовательном соединении ёмкостей
- •6. Ёмкость участка цепи при параллельном соединении емкостей
- •7. Закон Ома для полной цепи. Закон Ома для цепи, содержащей эдс (неоднородный участок цепи)
- •8. Первый закон Кирхгофа
- •9. Второй закон Кирхгофа
- •10. Два закона электролиза: закон Фарадея и выражение для электрохимического эквивалента
- •Глава 12. Модели электричества §18. Модели электростатики
- •1. Заряд как невесомая невидимая «жидкость»
- •2. Заряд как избыток или недостаток электронов в веществе
- •§19. Модели электрического тока
- •1. Электрический ток как поток невесомой невидимой «жидкости»
- •2. Электрический ток как поток заряженных частиц
3. Выражение второго закона Ньютона через изменение импульса материальной точки
Теорема
физики. Формула и словесная формулировка
математической записи:
второй
закон Ньютона можно записать в виде
.
Доказательство
теоремы. Вывод формулы:
запишем второй закон Ньютона в известном
виде: Fрез=ma.
Используя определение ускорение, получим
.
Учитывая, что ∆v
= v2
−
v1
, приходим к доказательству теоремы:
.
Теорема доказана.
Условия выполнения: формула выполняется всегда.
Глава 4. Модели механики
1. Физическое тело, или просто тело
О
писание
модели:
физическое тело − это некоторый объем
вещества, который в процессе изучения
не изменяет следующих характеристик
1. Объема. 2. Массы. 3. Геометрической формы. 4. Химического состава.
Область применения: применяется при изучении всех законов, явлений и процессов физики за редчайшими исключениями, которые всегда оговариваются особо.
2. Материальная точка
О
писание
модели:
материальная
точка – это физическое
тело, геометрическими размерами которого
можно пренебречь в условиях данной
задачи.
Область применения: 1. Расстояние между телами много больше размеров самих тел. (Например, движение планет вокруг Солнца, рис. а).
2. Размерами одного тела можно пренебречь по сравнению с размерами
другого тела. (Например, движение автомобиля по поверхности Земли, рис. б).
3. Если все точки тела движутся по одинаковым траекториям, то описывается движение только одной точки. Таким образом, в этом случае применяется модель материальной точки. (Например, при движении поезда можно описать положение фары локомотива как положение материальной точки, рис. в. Положение всех остальных материальных точек поезда пересчитывается).
3. Система отсчета
Описание модели: понятие системы отсчета включает в себя: 1. Начало
о
тсчета,
связанное с некоторым телом отсчета,
подвижным или неподвижным относительно
наблюдателя. 2. Координатные оси, выходящие
из начала отсчета. 3.Часы. 4. Сигнал
передачи информации.
Область применения: применяется всегда. Свойства пространства и времени изменяются, когда скорости тел приближаются к скорости сигнала (теория относительности). Когда координатные оси перпендикулярны, система называется декартовой (рис.а). Полярная система координат представлена координатами R, Ө, (рис. б). Применяются и другие системы координат.
4 . Абсолютно упругий удар
Описание модели: удар, после которого форма взаимодействующих тел полностью восстанавливается.
Если форма тела полностью восстанавливается, значит, механическая энергия не переходит в тепло, деформацию или другие виды энергии. Значит, при абсолютно упругом ударе сохраняется механическая энергия системы соударяющихся тел.
Поскольку за малый временной промежуток удара потенциальная энергия тела не успевает измениться, то сохраняться будет кинетическая энергия соударяющихся тел:
.
В соответствии со следствием из закона сохранения импульса (п.2, с.44) сохраняется суммарный импульс абсолютно упруго взаимодействующих тел. m1v1 + m2v2 = m1u1+ m2u2. Здесь m1 и m2 – массы взаимодействующих тел; v1 и v2 – скорости тел до соударения; u1 и u2 − скорости тел после соударения.
Область применения: применяется для расчета параметров соударяющихся тел, состоящих из резины, железа, стали и др. веществ, проявляющих свойства упругости.