Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тО-110 ДМ ОТВЕТЫ_0.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
596.1 Кб
Скачать

Вопрос 14 Выносливость дм при переменных напряжениях

Способность материала воспринимать многократное действие переменного напряжения от заданной нагрузки без разрушения называют выносливостью

Пределом выносливости материала называют максимальное напряжение, которое может выдержать образец материала при наработке заданного числа циклов.

Предел выносливости детали можно повысить также путем поверхностной термической обработки (поверхностной закалкой токами высокой частоты или кислородно-ацетиленовым пламенем) или термохимической обработки (цементацией или азотированием).

В результате испытаний строится кривая выносливости,

Испытания производят на испытательных машинах, позволяющих нагружать образец переменными нагрузками с частотой цикла 2000 – 3000 об/мин.

Многочисленные эксперименты, проведенные с образцами различных форм и размеров, а также практика эксплуатации деталей машин показывают, что прочность при переменных напряжениях (величина предела выносливости) в значительной степени зависит от формы и размеров детали, а также от состояния ее поверхности и воздействия окружающей среды.

В большинстве случаев испытания на выносливость проводят на лабораторных образцах диаметром 5—10 мм, имеющих в пределах рабочей части строго цилиндрическую форму; поверхность образцов имеет высокую чистоту. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов, будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличающихся от нормальных образцов наличием концентратов напряжений, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и спешильных образцов предел выносливости, определенный при испытании последних, ниже.

Вопрос 15 Усталость дм и способы определения пределов выносливости

Усталость деталей машин в значительной степени зависит от конструктивных, технологических, эксплуатационных и других факторов, которые в большинстве случаев трудно учесть при расчете механических конструкций на усталостную прочность. В этой связи испытания па усталость материалов и натурных деталей в рабочих условиях, на стадии доводки окончательного варианта конструкции являются решающим звеном в процессе создания надежных и долговечных машин. Однако такие испытания связаны с многочисленными трудностями, так как трещины усталости чаще всего развиваются на деталях, расположенных в труднодоступных местах, которые часто заполнены различными средами.

Пределы выносливости завис.от коэф.ассиметрии цикла. По рез-там испытаний строят диагр.предельных амплитуд напряж-ий. Аппроксимируя ее, получаем линейн.завис-ть а0 = -1 -  т, где - коэф.,хар-щий чувствит-ть матер.к ассим-ии цикла(для касат.или норм.напряж-ий), зависит от предела прочности матер.

Предел выносливости материала определяют с помощью испытаний серий одинаковых образцов (не менее 10 шт.): на изгиб, кручение, растяжение-сжатие или в условиях комбинированного нагружения (последние два режима для имитации работы материала при асимметричных циклах нагружения или в условиях сложного нагружения).

Испытание начинают проводить при высоких напряжениях (0,7 — 0,5 от предела прочности), при которых образец выдерживает наименьшее число циклов. Постепенно уменьшая напряжения можно обнаружить, что стальные образцы не проявляют склонности к разрушению независимо от длительности испытания. Опыт их испытания показывает, что если образец не разрушился до циклов, то и при более длительном испытании он не разрушится. Поэтому это число циклов обычно принимают за базу испытаний и устанавливают то наибольшее значение максимального напряжения цикла, при котором образец не разрушается до базы испытаний. Это значение и принимают за предел выносливости.

Результаты испытаний можно представить в виде кривой усталости (также кривая Веллера, S-N диаграмма), которая строится для симметричных циклов нагружения. По оси абсцисс на логарифмической шкале откладывают количество циклов, по оси ординат напряжения:

Медианные значения пределов выносливости деталей машины в номинальных напряжениях  (соответствующие вероятности разрушения Р = 50 %) определяют с учетом коэффициента снижения предела выносливости К по формулам:

- при растяжении - сжатии или изгибе

,                                                                                              ( 1)

,                                                                ( 2)

, при кручении

,                                                                                                ( 4)

,                                                                 ( 5)

16. Изобретение относится к измерительной технике, в частности для определения напряжений на поверхностях деталей машин. Способ состоит в том, что на исследуемое место детали в направлении градиента изменения напряжений закрепляют два датчика контроля циклических деформаций, отличающихся чувствительностью к амплитуде напряжений. Проводят эксплуатационные испытания детали до появления реакции на более чувствительном датчике, фиксируют ее границы по длине датчика и переносят эти границы на менее чувствительный датчик. Менее чувствительный датчик снимают и помещают на выполненный в виде балки равного сопротивления тарировочный образец, который подвергают циклическому деформированию при известной амплитуде напряжений. В процессе деформирования тарировочного образца определяют зависимость между числом циклов нагружения и положением границ реакции на датчике. Устанавливают число циклов деформирования тарировочного образца, при котором координаты границ реакции на менее чувствительном датчике совпадают с координатами границ реакции на более чувствительном датчике...

17Вместе с тем при создании космических конструкций из слоистых композиционных материалов с полимерной матрицей необходимо учитывать следующие их особенности:

- высокие удельные характеристики прочности и жесткости;

- возможность создания конструкции с программируемыми характеристиками;

- возможность релаксации напряжений через деформацию в течение времени эксплуатации;

- изменение геометрических параметров конструкции (микродеформация) за счет влагопоглощения или десорбции влаги и др.

Обычно оптимизация прецизионной конструкции из слоистого композиционного материала проводится при варьировании трех параметров: материалов полуфабрикатов и их характеристик; угла формирования слоев; подбора количества слоев.

ОПТИМИЗАЦИЯ — в наиболее общем случае: выбор наилучшего (оптимального) варианта из множества возможных. В экономике — определение значений экономических показателей, при которых достигается оптимум, то есть оптимальное, наилучшее состояние системы. Чаще всего оптимуму соответствует достижение наивысшего результата при данных затратах ресурсов или достижение заданного результата при минимальных ресурсных затратах.

18Стандартизация определяет основу не только настоящего, но и будущего развития хозяйственно-экономической деятельность общества должна осуществляться в полном соответствии с научно-техническим прогрессом.

Теоретической базой современной стандартизации является система предпочтительных чисел. Предпочтительными числами называются числа, которые рекомендуется выбирать как преимущественные перед другими при назначении величин параметров для вновь создаваемых изделий.

Параметр - это количественная характеристика свойств продукции. Различают размерные параметры; весовые параметры; параметры, характеризующие производительность машин и приборов; энергетические параметры.

Продукция определенного назначения характеризуется рядом параметров. Набор установленных значений параметров называется параметрическим рядом.

Процесс стандартизации параметрического ряда - параметрическая стандартизация - заключается в выборе и обосновании целесообразной номенклатуры и численных значений параметров. Решается эта задача с помощью математических методов.

Предпочтительные числа получают на основе геометрической прогрессии:

- первый член прогрессии;

q - знаменатель прогрессии,

n - принимает целые значения в интервале от 0 до R, где R = 5,10,20,40,80, 160

Если придерживаться строго обоснованного ряда предпочтительных чисел, то параметры и размеры отдельного изделия или группы изделий наилучшим образом будут согласованы со всеми соответствующими видами продукции: электродвигателей - с технологическим оборудованием, грузоподъемными устройствами; предохранительных клапанов - с паровыми котлами, комплектующих изделий - с присоединительными и посадочными местами в машине. Несоблюдение этого условия вызывает излишние затраты материалов, электрической и других видов энергии, неполное использование оборудования, снижение производительности труда, рост себестоимости продукции. Например, несоответствие сортамента круглого проката, выпускавшегося ранее металлургическими заводами, и нормального ряда диаметров в машиностроении приводило к излишнему стружкообразованию, снижению коэффициента использования металла, дополнительной непроизводительной загрузке металлорежущих станков, в результате требовалось больше станков.

Предпочтительные числа и их ряды служат основой упорядочения выбора величин и градаций параметров производственных процессов, оборудования, приспособлений, режущего измерительного инструмента, штампов, материалов, полуфабрикатов, транспортных средств и т.п. Создают предпосылки для сокращения номенклатуры изделий, сокращения длительности цикла технологической подготовки производства, организации массового изготовления продукции.

Ряды предпочтительных чисел должны удовлетворять следующим требованиям:

представлять рациональную систему градаций, отвечающую потребностям производства и эксплуатации;

быть бесконечными в направлении уменьшения и увеличения чисел;

включать все последовательные десятикратные или дробные значения каждого числа ряда;

быть простыми, легко запоминаемыми.

Многие промышленно развитые страны приняли национальные стандарты на нормальные линейные размеры. ГОСТ 8032-84 «Предпочтительные числа и ряды предпочтительных чисел», составленный с учетом рекомендаций Международной организации по стандартизации (ИСО), устанавливает четыре основных ряда предпочтительных чисел (R 5, R 10, R 20, R 40) и два дополнительных ряда ( R 80, R 160). Цифра указывает количество чисел в десятичном интервале. При выборе нужно отдавать нормальным размерам из рядов с более крупной градацией. На базе ГОСТ 8032 утвержден ГОСТ 6636 «Нормальные линейные размеры (см.приложение 2).

Введение единого порядка при переходе от одних численных значений параметров к другим во всех отраслях промышленности уменьшает количество типоразмеров, приводит к более экономному раскрою исходных материалов, позволяет согласовать увязать между собой различные виды изделий, материалов и полуфабрикатов, транспортных средств, производственного оборудования (по мощности, габаритам т.п.).

Если, например, на каком-то заводе предполагается выпускать семь типоразмеров двигателей (минимальная мощность первого типоразмера 10 кВт), то по нормальному ряду чисел со знаменателем прогрессии параметрический ряд будет включать в себя двигатели следующих мощностей: 10, 16, 25, 40, 63, 100, 160 квт.

В машиностроении и приборостроении предпочтительные числа, принятые за основу при назначении классов точности, размеров, углов, радиусов, канавок, уступов, линейных размеров, сокращают номенклатуру режущего и измерительного инструмента, штампов, пресс-форм, приспособлений. Это способствует росту уровня взаимозаменяемости, повышению серийности, технического уровня и качества выпускаемой продукции, расширению объемов ее производства, улучшению организации инструментального хозяйства на предприятиях. В результате значительно снижается себестоимость изделий увеличивается экономическая эффективность производства.

 

*****К числу основных методов стандартизации относятся унификация, агрегатирование.

Унификация - это деятельность по рациональному сокращению числа типов деталей, агрегатов одинакового функционального назначения. Она базируется на классификации и ранжировании, селекции и симплификации, типизации и оптимизации элементов готовой продукции.

Унификацию можно рассматривать как средство оптимизации параметров качества и ограничения количества типоразмеров выпускаемых изделий и их составных частей. При этом унификация воздействует на все стадии жизненного цикла продукции, обеспечивает взаимозаменяемость изделий, узлов и агрегатов, что, в свою очередь, позволяет предприятиям кооперироваться друг с другом.

К основным видам унификации относят конструкторскую и технологическую унификацию. При этом первая предполагает унификацию изделий в целом и их составных частей (деталей, узлов, комплектующих изделий и т.п.), а вторая - унификацию нормативно-технической документации (стандартов, технических условий, инструкций, методик, руководящих документов, конструкторско-технологической документации и др.).

Результатом работ по унификации могут быть альбомы типовых (унифицированных) конструкций, деталей, узлов, сборочных единиц и т.д.

В зависимости от области проведения унификации изделий унификация может быть межотраслевой, отраслевой и заводской.

Степень унификации характеризуется уровнем насыщенности изделия унифицированными деталями, узлами и сборочными единицами.

Показателем уровня унификации является коэффициент применимости:

 

п - общее число деталей в изделии, шт.;

п о - число оригинальных деталей, шт.

Агрегатирование - это метод создания машин, приборов и оборудования из отдельных стандартных унифицированных узлов, многократно используемых при создании различных изделий на основе геометрической и функциональной взаимозаменяемости. Другим словами метод конструирования и эксплуатации изделий, основанный на функциональной и геометрической взаимозаменяемости их основных узлов и агрегатов.

Важнейшим преимуществом изделий созданных на основе агрегатрования, является конструктивная обратимость. Агрегатирование позволяет также многократно применять стандартные детали, узлы и агрегаты в новых модификациях изделий при изменении их конструкции.

Использование агрегатирования как метода стандартизации обеспечивает решение целого ряда актуальных задач в различных отраслях промышленности.

В настоящее время на повестке дня переход к производству техники на базе крупных агрегатов - модулей. Модульный принцип широко распространен в радиоэлектронике и приборостроении. Это основной метод создания гибких производственных систем.

19 вопрос

1 тип Продолжительный режим работы

2 тип Кратковременный

3 тип Переодический повторно-кратковременный режим работы

4 тип Периодический повторно-кратковременный режим с влиянием пусковых процессов

5 тип Периодический повторно-кратковременный режим с влиянием пусковых процессов и электрическим торможением 

6 тип Перемежающийся режим работы S6

21 вопрос

2 . 1 . З У Б Ч А ТЫ Е П Е Р Е Д А Ч И

Достоинства и недостатки прямозубой цилиндрической передачи

Зубчатые передачи составляют наиболее распространенную и важную

группу механических передач, поскольку обладают рядом существенных

достоинств:

1) малые габариты;

2) высокий КПД;

3) высокая надежность и долговечность;

4) постоянство передаточного отношения;

5) возможность изменения закона движения;

6) возможность использования в широком диапазоне скоростей и мощно-

стей.

К недостаткам зубчатых передач можно отнести:

1) производство зубчатых колес требует высокой культуры производства,

а это дорого;

2) отсутствие функции самопредохранения от перегрузки;

3) повышенный шум в работе;

4) невозможность безступенчатого регулирования передаточного отноше-

ния.