
- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли
- •4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость
- •1)Центральная проекция
- •2) Ортогональная проекция
- •3) Горизонтальная проекция
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •1) Искажение расстояний
- •2) Искажение высот точек
- •7. Системы координат, применяемые в геодезии
- •1)Географические и геодезические координаты.
- •2)Астрономические координаты
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •9. Использование проекции Гаусса-Крюгера в геодезии и картографии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •18. Основные особенности оформления топографических карт и планов( стр 115)
- •19. Способы изображения рельефа
- •20. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними
- •1.Ориентирование линий.
- •21. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача
- •22. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •23. Методы определения координат геодезических пунктов
- •24. Триангуляция
- •25Полигонометрия
- •26Трилатерация
- •27Космическая геодезия. Задачи космической геодезии.
- •28 Общие представления о методах, применяемых в космической геодезии. Фундаментальное уравнение космической геодезии.
- •29 Сущность определения местоположения при помощи спутниковых навигационных систем
- •30. Глобальные спутниковые навигационные системы «навстар» ,gprs и «глонасс»
- •31 Структура глобальных систем позиционирования и назначение их подсистем.
- •32 В чём суть кодового измерения дальностей?
- •33 В чём суть фазового метода измерения дальностей
- •34 Абсолютный и дифференциальный способы позиционирования
- •35 Чем отличается альманах от эфемерид?
- •36 Определение координат точек методом засечек( стр 70)
- •37Теодолитный ход и его элементы
- •38Камеральная обработка разомкнутого теодолитного хода
- •39Измерения, и их классификация
- •40Погрешности измерений и их виды
- •41Вероятнейшее значение измеряемой величины
- •42Средняя квадратическая погрешность отдельного измерения и результата измерений
- •43Приборы для измерения линий
- •44Мерная лента. Измерение длин линий мерной лентой. Ошибки измерений расстояний штриховой стальной лентой
- •45Измерение длины наклонной линии и приведение ее на плоскость горизонта
- •46Оптические(геометрические) дальномеры. Сущность определения расстояния
- •47Теория оптического нитяного дальномера и его устройство
- •48 Измерение дальномером наклонных расстояний
- •49Сущность измерения линий свето- и радиоальномерами, их использование в геодезии
- •50Определение неприступных расстояний
- •51Основные части теодолита и их назначение
- •52Уровни в геодезических приборах, их назначение и требования к ним
- •53. Требования к взаимному положению осей теодолита, поверки.
- •54Измерение горизонтальных углов в теодолитном ходе
- •55Измерение вертикальных углов
- •56Основные источники ошибок при измерении горизонтальных углов
- •57Метод тригонометрического нивелирования
- •58Камеральная обработка хода тригонометрического нивелирования
- •59Основные виды геодезических сетей
- •60Построение государственной плановой сети
- •61 Современное состояние плановой геодезической сети
- •62Построение государственной нивелирной сети
- •63Методы нивелирования
- •64Сущность геометрического нивелирования. Отклонение визирного луча уровенной поверхности
- •65Типы нивелиров
- •66Основные части уровенного нивелира и их назначение
- •67Нивелир с самоустанавливающейся линией визирования
- •68Геометрические условия, которым должен удовлетворять нивелир
- •69Основные источники погрешностей геометрического нивелирования
- •70Производство технического нивелирования. Работа на нивелирной станции
- •71Назначение связующих и плюсовых точек при геометрическом нивелировании
- •72Сущность барометрического нивелирования
- •73 Сущность мензульной съемки. Общий порядок производства съемки
- •74 Построение съемочной сети для мензульной съемки
- •76 И 77. Тахеометрическая съемка.
- •78. Глазомерная съемка.
- •79. Аэрофотосъемка местности. Фотокамера
- •80 Плановый и перспективный снимки
- •81 Масштаб горизонтального аэрофотоснимка
- •82Система координат снимка и его главная точка
- •83Основные свойства моно- и бинокулярного зрения
- •84Геометрические свойства аэрофотоснимка
- •85Измерение высот по аэрофотоснимкам, понятие об угловом и продольном параллаксе
- •86Сущность и этапы контурно-комбинированной съемки
- •87Понятие о стереотопографической съемке. Основные этапы
- •88Сущность фототеодолитной съемки
80 Плановый и перспективный снимки
Аэроснимок - это фотографическое изображение участка земной поверхности, представляющее его центральную проекцию. При отвесном положении оси фотоаппарата получается плановый снимок, при наклонном - перспективный снимок.
81 Масштаб горизонтального аэрофотоснимка
Используя
рисунок, запишем формулу, связывающую
масштаб фотоизображения с фокусным
расстоянием объектива АФА f
и высотой фотографирования H
,
где
О
днако
на наклонном снимке масштаб изображения
не будет постоянным. Вместе с ним будут
искажаться размеры и, что особенно
важно, фигуры, конфигурации объектов.
Исправление снимков от искажений из-за наклона и приведение их к заданному масштабу называют трансформированием. Транс-ние осуществляется либо фотомеханич способом, либо графическим путем с помощью проективных сеток, к-рые строятся на четырех общих точках, найденных на снимках и картографич основе. Между ними строят на снимках и основе 2 четырехугольника (трапеции), к-рые разбиваются на равное число более мелких трапеций. С их помощью содерж-е отдешифрированных снимков переносится на картографич основу. Из-за влияния рельефа происходит сдвиг изображения. Величина сдвига зависит от фокусного расстояния объектива АФА, высоты фотографирования и высоты самого объекта. Исправление искажения из-за рельефа — более сложная проблема, чем исправление из-за влияния наклона снимка. Но и она решена в виде так называемого ортотрансформирования на специальных ортофото- и электронных трансформаторах.
Однако само по себе наличие сдвига из-за рельефа, так называемый параллакс, дает возможность рассматривать снимки стереоскопически. Стереоскопия — объемное видение объектов окружающей нас действительности. Человек обладает такой возможностью благодаря наличию двух глаз. В середине XIX в. было открыто искусственное стереовидение. Для этого нужно только с двух точек, расположенных на некотором удалении друг от друга (базисе), сфотографировать и зарисовать 2 изображения. 2 перекрывающихся аэрофотоснимка (или два фототеодолитных снимка) составляют стереопару, которую можно рассматривать в стереоскоп и видеть местность объемно. Для этого нужно левый снимок рассматривать левым глазом, а правый — правым.
82Система координат снимка и его главная точка
Рассмотрим задачу на примере одиночной модели. Коор-ты точек левого снимка считаются исходными. На основе формул (1) определяются элементы аффинного преобраз-я коорд-т точек правого снимка в систему коорд-т левого снимка. Коорд-ты точек правого снимка трансформируются с учетом вычисленных параметров.
(1)
(2)
На основе формул (2) вычисляются элементы проективного преобразования предварительно трансформированных координат точек правого снимка в систему координат левого снимка, и выполняется окончательное трансформирование координат в систему координат левого снимка. Назовем координаты точек, полученные в результате трансформирования, координатами точек модели. Для построения модели смещений точек, вызванных влиянием рельефа местности, используются формулы (4). Прототипом этих формул послужили формулы проф. А. Н. Лобанова для трансформирования координат точек пары снимков на горизонтальную плоскость (3).
(3)
(4)
Для вычисления поправок «за рельеф» необходимо знать координаты точек надира. Для их вычисления выполняется предварительное трансформирование координат точек модели по опорным точкам. Трансформирование производится на основе формул (1) и (2). В результате получают элементы преобразования координат точек в систему координат местности и координаты точек пары снимков приближенно приведенные в систему координат местности. Очевидно, что главные точки снимков после трансформирования в систему координат местности совпадут с точками надира. Приближенные координаты главных точек на снимках находятся как средние значения из габаритов кадра, преобразуются в систему координат точек местности, в результате получают приближенные координаты точек надира. По формулам (4) вычисляются поправки в положение точек левого и правого снимка на местности, из значений исправленных координат вычисляются средние значения и выполняется окончательное трансформирование координат по опорным точкам. Поправки, вычисленные по формулам (4) используются для построения модели смещений для каждого снимка стереопары. Модель смещений строится с помощью поликвадратических функций и используется для расчета поправок «за рельеф» при трансформировании изображений. При создании ортофотоизображения координаты каждого пикселя преобразуются с учетом всех элементов аффинного и проективного преобразования и поликвадратических поправок.