- •Колебания и волны. Звук. Ультразвук.
- •1.Колебания. Гармонические колебания. Характеристики колебаний: амплитуда, период, частота, циклическая частота, фаза.
- •2.Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны. Продольные и поперечные волны. Примеры.
- •3.Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •9. Ультразвуковые методы исследования (узи) в медицинской диагностике.
- •10. Эффект Доплера; его применение для измерения скорости кровотока и в эхокардиографии.
- •11. Ударная волна. Получение и использование ударных волн в медицине.
- •Тепловое излучение.
- •12. Тепловое излучение. Его характеристики: энергетическая светимость, спектральная плотность, их взаимосвязь. Закон Стефана-Больцмана.
- •13. Поглощение теплового излучения. Коэффициент поглощения. Понятие абсолютно черного тела. Закон Кирхгофа.
- •14. Распределение энергии в спектре теплового излучения. Закон Вина.
- •15. Инфракрасное излучение. Тепловидение. Методы получения изображений в тепловидении: фотоматериалы, жидкие кристаллы, электронно-оптические преобразователи.
- •Электромагнитные колебания и волны.
- •16. Электрическое поле. Характеристики электрического поля: напряженность, разность потенциалов. Линии электрического поля.
- •17. Магнитное поле. Характеристики магнитного поля: индукция, поток индукции. Линии магнитного поля.
- •18. Взаимосвязь электрического и магнитного полей. Электромагнитная волна. Скорость электромагнитных волн.
- •19. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине.
- •20. Биологическое действие постоянного тока и тока низкой частоты. Электротравматизм.
- •22. Глубина проникновения неионизирующих магнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •23. Электрическая активность сердца. Электрокардиография. Электрокардиограф. Назначение и принцип работы. Связь между зубцами экг и стадиями сердечных сокращений.
- •24. Электрическая активность мозга. Электроэнцефалограф. Назначение и принцип работы.
- •25. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •26. Законы отражения и преломления света. Полное внутреннее отражение. Волоконная оптика, её применение в медицине.
- •27. Оптическая система глаза. Недостатки зрения, методы их коррекции.
- •28. Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.
- •29. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •30. Линейчатый спектр излучения атомов. Его объяснение в теории Нильса Бора.
- •31. Волновые свойства частиц. Гипотеза де-Бройля, её экспериментальное обоснование.
- •32. Электронный микроскоп. Принцип действия, разрешающая способность, применение в медицинских исследованиях.
- •33. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •34. Люминесценция. Ее виды. Закон Стокса.
- •35. Применение люминесценции в медико-биологических исследованиях.
- •36. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта.
- •37. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •38. Принцип работы лазера. Инверсная заселенность энергетических уровней. Возникновение фотонных лавин.
- •39. Применение лазеров в медицине.
- •40. Ядерный магнитный резонанс. Использование ямр в медицине (мрт).
- •41. Физические основы и диагностические возможности позитронно-эмиссионной томографии (пэт).
- •42. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •60. Явление диффузии. Уравнение Фика.
- •61. Строение и модели клеточных мембран.
- •62. Физические свойства биологических мембран.
- •63. Концентрационный материал и уравнение Нернста.
- •64. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •65. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца.
- •66. Возбудимость клеток и тканей. Методы возбуждения. Закон «всё или ничего».
- •67. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •68. Потенциал - зависимые ионные каналы: строение, свойства, функционирование.
- •69. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •70. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •71. Определение рецептора. Примеры использования рецепции в жизнедеятельности организма. Классификация рецепторов.
- •72. Строение рецепторов. Общие механизмы рецепции. Рецепторные потенциалы.
- •73. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •74. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •75. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •76. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •77. Геомагнитное поле: природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •Случайные события. Относительная частота наступления события. Закон больших чисел.
- •Несовместимые события. Примеры. Теорема сложения вероятностей.
- •Независимые событии. Пример. Теорема умножения вероятностей.
- •Непрерывная случайная величина. Плотность вероятности. Условия нормировки.
- •Выборка. Генеральная совокупность. Требования к выборке.
- •Понятие средневыборочного значения и математического ожидания случайной величины.
- •Характеристики разброса в выборках: размах, дисперсия, среднеквадратичное отклонение.
- •Понятие о нормальном распределение случайной величины.
- •Гистограмма. Свойства гистограмм.
- •Понятие доверительного интервала. Уровень значимости. Доверительная вероятность.
- •Однородные и неоднородные выборки. Проверка однородности.
- •Понятие о коэффициенте корреляции. Его свойства.
- •Понятие о линейной регрессии. Уравнение линейной регрессии и его график.
8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты: микровибрации на клеточном и субклеточном уровне, разрушение биомакромолекул, перестройку и повреждение биологических мембран, изменение проницаемости мембран, тепловое действие, разрушение клеток и микроорганизмов.
Механические колебания звуковых частот оказывают массирующее действие, способствующее улучшению местного кровообращения. Размеры массируемых областей соизмеримы с длиной волны, а она для ультразвука мала.
Чем больше интенсивность УЗ, тем больше перепад давления на единицу длины, называемый градиентом давления. Большие градиенты давления могут представлять угрозу для клеток. Разрушительные действия больших градиентов давления в УЗ большой интенсивности можно использовать для подавления и разрушения клеток злокачественных опухолей.
Если интенсивность УЗ в жидкости превосходит пороговый уровень, в ней появляется еще один фактор разрушительного действия – кавитация – явление возникновения в жидкости пустот в виде пузырьков, заполненных газом, в условиях, когда в жидкости возникает пониженное давление.
Медико-биологические приложения УЗ можно разделить на:
Методы диагностики
Эхоэнцефалография – определение опухолей и отека головного мозга, ультразвуковая кардиография – измерение размеров сердца в динамике, ультразвуковая локация в офтальмологии – для определения размеров глазных сред.
С помощью УЗ эффекта Доплера изучают характер движения сердечных клапанов и измеряют скорость кровотока.
Методы воздействия
УЗ физиотерапия (первичный механизм – тепловое воздействие на ткань), при хирургических операциях применяют УЗ скальпель, способный рассекать и мягкие, и костные ткани (Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества), «сваривание» поврежденных костных тканей.
9. Ультразвуковые методы исследования (узи) в медицинской диагностике.
Ультразвуковое исследование (УЗИ) — неинвазивное исследование организма человека или животного с помощью ультразвуковых волн. Физическая основа УЗИ — пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварц, титанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды — прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда, в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.
Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания — временем, за которое молекула (частица) совершает одно полное колебание; частотой — числом колебаний в единицу времени; длиной — расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. См. пункт 8
