
- •Колебания и волны. Звук. Ультразвук.
- •1.Колебания. Гармонические колебания. Характеристики колебаний: амплитуда, период, частота, циклическая частота, фаза.
- •2.Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны. Продольные и поперечные волны. Примеры.
- •3.Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.
- •4. Физические и психофизические характеристики звука: интенсивность, акустическое давление, частота, громкость, высота тона, спектр, тембр. Их взаимное соответствие.
- •5. Особенности восприятия звука. Закон Вебера-Фехнера. Децибельная шкала громкости.
- •6. Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.
- •7. Ультразвук. Получение и регистрация ультразвука на основе обратного и прямого пьезоэлектрического эффекта.
- •8. Взаимодействие ультразвука различной частоты и интенсивности с веществом. Применение ультразвука в медицине.
- •9. Ультразвуковые методы исследования (узи) в медицинской диагностике.
- •10. Эффект Доплера; его применение для измерения скорости кровотока и в эхокардиографии.
- •11. Ударная волна. Получение и использование ударных волн в медицине.
- •Тепловое излучение.
- •12. Тепловое излучение. Его характеристики: энергетическая светимость, спектральная плотность, их взаимосвязь. Закон Стефана-Больцмана.
- •13. Поглощение теплового излучения. Коэффициент поглощения. Понятие абсолютно черного тела. Закон Кирхгофа.
- •14. Распределение энергии в спектре теплового излучения. Закон Вина.
- •15. Инфракрасное излучение. Тепловидение. Методы получения изображений в тепловидении: фотоматериалы, жидкие кристаллы, электронно-оптические преобразователи.
- •Электромагнитные колебания и волны.
- •16. Электрическое поле. Характеристики электрического поля: напряженность, разность потенциалов. Линии электрического поля.
- •17. Магнитное поле. Характеристики магнитного поля: индукция, поток индукции. Линии магнитного поля.
- •18. Взаимосвязь электрического и магнитного полей. Электромагнитная волна. Скорость электромагнитных волн.
- •19. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине.
- •20. Биологическое действие постоянного тока и тока низкой частоты. Электротравматизм.
- •22. Глубина проникновения неионизирующих магнитных излучений в биологическую среду. Ее зависимость от частоты. Методы защиты от электромагнитных излучений.
- •23. Электрическая активность сердца. Электрокардиография. Электрокардиограф. Назначение и принцип работы. Связь между зубцами экг и стадиями сердечных сокращений.
- •24. Электрическая активность мозга. Электроэнцефалограф. Назначение и принцип работы.
- •25. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
- •26. Законы отражения и преломления света. Полное внутреннее отражение. Волоконная оптика, её применение в медицине.
- •27. Оптическая система глаза. Недостатки зрения, методы их коррекции.
- •28. Оптический микроскоп. Ход лучей в микроскопе. Полезное увеличение микроскопа.
- •29. Разрешающая способность и предел разрешения микроскопа. Пути повышения разрешающей способности.
- •30. Линейчатый спектр излучения атомов. Его объяснение в теории Нильса Бора.
- •31. Волновые свойства частиц. Гипотеза де-Бройля, её экспериментальное обоснование.
- •32. Электронный микроскоп. Принцип действия, разрешающая способность, применение в медицинских исследованиях.
- •33. Квантово-механическое объяснение структуры атомных и молекулярных спектров.
- •34. Люминесценция. Ее виды. Закон Стокса.
- •35. Применение люминесценции в медико-биологических исследованиях.
- •36. Фотоэлектрический эффект. Уравнение Эйнштейна для внешнего фотоэффекта.
- •37. Свойства лазерного излучения. Их связь с квантовой структурой излучения.
- •38. Принцип работы лазера. Инверсная заселенность энергетических уровней. Возникновение фотонных лавин.
- •39. Применение лазеров в медицине.
- •40. Ядерный магнитный резонанс. Использование ямр в медицине (мрт).
- •41. Физические основы и диагностические возможности позитронно-эмиссионной томографии (пэт).
- •42. Рентгеновское излучение, его спектр. Тормозное и характеристическое излучение, их природа.
- •60. Явление диффузии. Уравнение Фика.
- •61. Строение и модели клеточных мембран.
- •62. Физические свойства биологических мембран.
- •63. Концентрационный материал и уравнение Нернста.
- •64. Ионный состав цитоплазмы и межклеточной жидкости. Проницаемость клеточной мембраны для различных ионов. Разность потенциалов на мембране клетки.
- •65. Потенциал покоя клетки. Уравнение Гольдмана-Ходжкина-Катца.
- •66. Возбудимость клеток и тканей. Методы возбуждения. Закон «всё или ничего».
- •67. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.
- •68. Потенциал - зависимые ионные каналы: строение, свойства, функционирование.
- •69. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.
- •70. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.
- •71. Определение рецептора. Примеры использования рецепции в жизнедеятельности организма. Классификация рецепторов.
- •72. Строение рецепторов. Общие механизмы рецепции. Рецепторные потенциалы.
- •73. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.
- •74. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.
- •75. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.
- •76. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.
- •77. Геомагнитное поле: природа, биотропные характеристики, роль в жизнедеятельности биосистем.
- •Случайные события. Относительная частота наступления события. Закон больших чисел.
- •Несовместимые события. Примеры. Теорема сложения вероятностей.
- •Независимые событии. Пример. Теорема умножения вероятностей.
- •Непрерывная случайная величина. Плотность вероятности. Условия нормировки.
- •Выборка. Генеральная совокупность. Требования к выборке.
- •Понятие средневыборочного значения и математического ожидания случайной величины.
- •Характеристики разброса в выборках: размах, дисперсия, среднеквадратичное отклонение.
- •Понятие о нормальном распределение случайной величины.
- •Гистограмма. Свойства гистограмм.
- •Понятие доверительного интервала. Уровень значимости. Доверительная вероятность.
- •Однородные и неоднородные выборки. Проверка однородности.
- •Понятие о коэффициенте корреляции. Его свойства.
- •Понятие о линейной регрессии. Уравнение линейной регрессии и его график.
24. Электрическая активность мозга. Электроэнцефалограф. Назначение и принцип работы.
Электрическая активность головного мозга - совокупность электрических реакций головного мозга, отражающих функции целого мозга и его отдельных образований. Частотный диапазон процессов, протекающих в мозгу, лежит в пределах от 0 до 10 кГц, а амплитудный - в пределах от десятков микровольт до сотен милливольт.
Электроэнцефалография (ЭЭГ) - метод исследования деятельности головного мозга животных и человека; основан на суммарной регистрации биоэлектрической активности отдельных зон, областей, долей мозга. ЭЭГ применяется в современной нейрофизиологии, а также в неврологии и психиатрии.
Работа мозга сопровождается электрической активностью, которую можно записать в виде электроэнцефалограмм.
Электрическая активность мозга мала и выражается в миллионных долях вольта; её можно зарегистрировать лишь при помощи специальных высокочувствительных приборов и усилителей, которые называются электроэнцефалографами.
Регистрация ЭЭГ осуществляется наложением на голову металлических пластинок (электродов), которые соединяют проводами со входом аппарата. На выходе получается графическое изображение колебаний разности биоэлектрических потенциалов живого мозга.
У здорового человека могут различаться ЭЭГ в зависимости от физиологического состояния (сон и бодрствование, восприятие зрительных или слуховых сигналов, разнообразные эмоции и т. п.). ЭЭГ здорового взрослого человека, находящегося в состоянии относительного покоя, обнаруживает два основных типа ритмов: -ритм, характеризующийся частотой колебаний в 8-13 Гц, и -ритм, проявляющийся частотой в 14-30 Гц.
25. Физическая природа света. Волновые свойства света. Длина световой волны. Физические и психофизические характеристики света.
Свет имеет двойственную природу, обладая свойствами волны и частицы. Корпускулы света, называемые фотонами, излучаются источником света в виде волн, распространяющихся с постоянной в данной среде скоростью. Скоростью света называют скорость света в вакууме. 300000 км/c.
Интерференция света — сложение световых волн, при котором обычно наблюдается характерное пространственное распределение интенсивности света (интерференционная картина) в виде чередующихся светлых и тёмных полос вследствие нарушения принципа сложения интенсивностей
Дифракция волн — явление огибания лучами света контура непрозрачных тел. В естеств. условиях Д. с. обычно наблюдается в виде нерезкой, размытой границы тени предмета, освещаемого удалённым источником.
Длины световых волн разные. Это различие человеческий глаз воспринимает как разные цвета. У фиолетовых лучей самая короткая длина волны - 400 нм, у красных - самая длинная - 760 нм. За красным концом спектра находятся инфракрасные лучи - их мы уже не видим, но ощущаем как тепло. Далее идёт микроволновое излучение и ещё дальше радиоволны. По другую сторону видимого спектра электромагнитные волны также есть. За фиолетовыми идут ультрафиолетовые, затем рентгеновские и, наконец, гамма-лучи. Чем короче длина волны, тем большей энергией обладает квант света. Таким образом, видимый свет занимает лишь небольшой диапазон всей шкалы электромагнитных волн.
Для характеристики восприятия света важны три качества: тон, насыщенность и яркость. Тон соответствует цвету и меняется с изменением длины волны света. Насыщенность означает количество монохроматического света, добавление которого к белому свету обеспечивает получение ощущения, соответствующего длине волны добавленного монохроматического света, содержащего только одну частоту (или длину волны). Яркость света связана с его интенсивностью. Воспринимаемая человеком яркость объекта зависит не только от интенсивности, но и от окружающего его фона. Если фигура (зрительный стимул) и фон освещены одинаково, то есть между ними нет контраста, яркость фигур возрастает с увеличением физической интенсивности освещения. Если контраст между фигурой и фоном увеличивается, яркость воспринимаемой фигуры уменьшается с увеличением освещенности.