Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Л12.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
534.53 Кб
Скачать

Метод резолюций

Методику продемонстрируем на примере. Пусть требуется доказать:

.

Сначала поступают точно так же, как и по методике Вонга, только необходимо преобразовать клаузу таким образом, чтобы слева от символа был ноль :

Затем из дизъюнктов составляют резолюции до тех пор, пока не получится ноль.

Выпишем по порядку все посылки и далее начнем их «склеивать». Дизъюнкты можно перебирать автоматически в соответствии с возрастанием порядковых номеров. Такая стратегия поиска нуля очень непродуктивна. К решению данной задачи можно подойти творчески.

В итоге получим:

1. А В

5. (1; 4)

2. С А

6. (2; 4) С

3.

7. (3; 5)

4.

8. (6; 7)

Иначе, произведенные раннее преобразования, можно представить в следующем виде:

Пример: Доказать истинность заключения

(AB); (AB);

(AB).

1 ) (AB) - посылка;

2 ) (AB)=(AB)(BA) - посылка;

3)(AB)=(AB) –отрицание заключения;

4) K = {(AB); (AB); (BA); (AB)};

5) (AB)(AB)= A - резольвента;

6) A(AB)=B - резольвента;

7) B(BA)=A - резольвента;

8) AA=  - пустая резольвента.

A

0

Достоинством принципа резолюции является то, что при доказательстве истинности заключения применяют только одно правило: поиск и удаление контрарных литер на множестве дизъюнктов до получения пустой резольвенты.

Алгоритм резолюции основан на том, что выводимость формулы В из множества посылок F1; F2; F3; . . . Fn равносильна доказательству теоремы

(F1F2F3. . .FnB),

формулу которой можно преобразовать так:

(F1F2F3. . .FnB) =

((F1F2F3. . .Fn)B) =

(F1F2F3. . .Fn( B)).

Следовательно, заключение В истинно тогда и только тогда, когда формула (F1F2F3...Fn(B))=л. Это возможно при значении “л” хотя бы одной из подформул Fi илиB.

Для анализа этой формулы все подформулы Fi иB должны быть приведены в конъюнктивную нормальную форму и сформировано множество дизъюнктов, на которые распадаются все подформулы. Два дизъюнкта этого множества, содержащие пропозициональные переменные с противоположными знаками (контрарные атомы) формируют третий дизъюнкт - резольвенту, в которой будут исключены контрарные пропозициональные переменные. Неоднократно применяя это правило к множеству дизъюнктов и резольвент, стремятся получить пустой дизъюнкт. Наличие пустого дизъюнкта свидетельствует о выполнении условия F1F2F3...FnB=л.

15