Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология Ответы на Экзамен.Вопросы.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
632.13 Кб
Скачать
  1. Раскройте современные представления о субстрате и природе автоматии сердечной мышцы. Объясните ионные механизмы возникновения потенциала действия пейсмейкерных клеток.

Автоматизм — способность сердца сокращаться под влиянием возникающих в нем возбуждений. Ритмическая деятельность сердца происходит благодаря наличию в области ушка правого предсердия ведущего центра автоматизма — синусно-предсердного (синусного) узла. От него по проводящим волокнам предсердий возбуждение достигает атриовентрикулярного узла, расположенного в стенке правого предсердия вблизи перегородки между предсердиями и желудочками. Здесь возбуждение переходит на миокард желудочков по волокнам пучка Гиса (предсердно-желудочкового пучка) и достигает волокон Пуркинье (сердечных проводящих миоцитов) (рис. 17.1). В норме водителем ритма сердца является синусно-предсердный узел; он обладает всеми качествами истинного пейсмекера (pacemaker — задаватель ритма), а именно:

• повышенной по сравнению с другими отделами сердца чувствительностью к влияниям гуморальной и нервной природы; 

• спонтанной ритмической медленной деполяризацией формирующих его элементов.

При нарушении автоматизма синусно-предсердного узла ритмические сокращения сердца могут продолжаться благодаря импульсам, возникающим в атриовентрикулярном узле. Однако частота и сила сокращений при этом вдвое меньше, чем до нарушений в области синусно-предсердного узла. Все отделы неспецифической проводящей системы миокарда способны к автоматизму, но практически этого не происходит, поскольку высшие отделы обладают более частым ритмом спонтанной активности. Гаскелл установил закон градиента автоматизма сердца, согласно которому у всех позвоночных способность к автоматизму тем меньше, чем дальше данный участок расположен от основания сердца и чем он ближе к его верхушке.

Теории автоматизма. Существует несколько теорий, объясняющих происхождение автоматизма (нейрогенная, эндогенная и др.). Наиболее популярна теория диастолического поля, в соответствии с которой в начальную фазу диастолы в проводящих миоцитах регистрируется мембранный потенциал, равный ~90 мВ. В диастолу метаболизм сердечной мышцы изменяется, и МП постепенно уменьшается. Степень уменьшения МП неодинакова в различных отделах сердца. Быстрее всего он уменьшается в клетках синусно-предсердного узла вследствие особенности их метаболизма. Мембранный потенциал постепенно достигает критического уровня деполяризации, вслед за которым следует ПД. Все остальные отделы сердца подчиняются возникшему ПД — возбуждению, генерируемому в водителе ритма.

Ионный механизм пейсмекерного потенциала. Клетки синусно-предсердного узла, обладающие автоматизмом, не способны длительно удерживать потенциал покоя. На наружной поверхности мембраны этих клеток происходит постоянное уменьшение МП, называемое медленной диастолической деполяризацией (МДД).

Основной причиной потенциала покоя в возбудимых клетках является высокая концентрация ионов калия в клетках и наличие некоторой проницаемости мембраны для них, вследствие чего ионы калия выходят по концентрационному градиенту из клеток и способствуют формированию калиевого равновесного потенциала.

Существует несколько причин МДД.

▲ Во время расслабления и покоя (диастола) предсердий происходит постепенное уменьшение проницаемости мембраны для ионов калия. В результате этого уменьшается калиевый равновесный потенциал.

▲ В период между циклами возбуждения имеется довольно высокий медленный постоянный входящий ток ионов натрия и в меньшей степени ионов кальция. Поэтому в клетках синусно-предсердного узла возникают натриевый и кальциевый равновесные потенциалы, противодействующие калиевому равновесному потенциалу. В связи с этим максимальная величина МП клеток синусно-предсердного узла составляет —60 мВ — ниже, чем потенциал покоя сократительных кардиомиоцитов, равный —90 мВ. Уменьшение калиевой проницаемости соответствует постоянно входящему току натрия и кальция. Кроме того, в самом конце МДД увеличиваются входящие токи натрия и кальция, что способствует спонтанной деполяризации.

▲ Клетки синусно-предсердного узла содержат большое количество ионов хлора, что существенно отличает их от всех остальных клеток сердца. В период между циклами возбуждения проницаемость мем¬браны для ионов хлора медленно увеличивается, и хлор начинает выходить из клеток по градиенту концентрации. Это способствует деполяризации мембраны.

▲ В межспайковый период постепенно снижается активность Na+ — К+-АТФазы, что уменьшает градиент концентрации этих ионов снаружи и внутри клеток синусно-предсердного узла и постепенно снижает потенциал покоя.

Когда уровень потенциала покоя уменьшается по сравнению с исходным приблизительно на 2 мВ, наступает резкое увеличение проницаемости мембраны вначале для Na+, а позднее для Са2+. В результате этих процессов МП приближается к критическому уровню деполяризации, что сопровождается уменьшением порога раздражения и увеличением возбудимости. При достижении величины критической деполяризации в клетках синусно- предсердного узла возникает ПД. Его амплитуда составляет около 100 мВ. С закрытием ионных каналов положительный заряд наружной поверхности мембраны восстанавливается.