
- •Источники энергии. Виды топлива. Тэр мира и рб
- •Парниковый эффект и его причины.
- •Потенциал энергосбережения.
- •Теплоносители. Основные требования к выбору теплоносителей
- •Характеристика основных видов теплоносителей, горячая вода, водяной пар, дымовые газы и воздух, как теплоносители.
- •Тепловая изоляция трубопроводов, зданий и сооружений
- •Экологические эффекты энергосбережения
- •Тепловые сети. Мини-тэц и мини-котельные
- •72 МВт и тепловой мощностью 25-86 мВт,
- •Энергетический менеджемент. Основные задачи энергетического менеджмента и управления тэр
- •Энергетические аудиты и обследования
- •Основные технические направления повышения эффектичности энергоиспользования
- •Вопросы нормирования энергопотребления. Методы нормирования энергопотребления.
Теплоносители. Основные требования к выбору теплоносителей
Теплоносителем называют вещество, служащее для доставки теплоты от источника к
Потребителю
Таким образом, доставка теплоты неразрывно связана с переносом массы самого теплоносителя, а для осуществления подвода и отвода теплоты необходимы, по крайней мере, два теплообменника.
К веществам, используемым в качестве теплоносителей, предъявляют ряд специфических требований. Теплоноситель должен быть удобен для транспортировки от источника тепловой энергии к потребителю. С этой точки зрения наиболее подходят жидкие и газообразные теплоносители, которые можно транспортировать по трубопроводам. Единицей объема теплоносителя должно переноситься максимальное количество теплоты. Следовательно, удельная (на единицу массы) энтальпия теплоносителя у источника и потребителя должна изменяться максимально, насколько это возможно, а плотность теплоносителя должна быть наибольшей. Выполнение этих условий обеспечивает минимальный объемный расход теплоносителя, т. е. позволяет уменьшить сечение трубопровода, по которому он движется, а также уменьшить скорость движения. В конечном итоге снижаются капитальные затраты на строительство теплотрассы и расходы па ее эксплуатацию.
В процессе подвода и отвода теплоты должны быть обеспечены максимальные значения коэффициента теплоотдачи. Выполнение этого требования позволяет уменьшить площадь поверхности теплообменных аппаратов, а в конечном счете снизить их стоимость и эксплуатационные расходы. Теплоноситель должен позволять производить доставку теплоты на необходимом температурном уровне. Соблюдение этого требования необходимо для достижения рабочей температуры в потребителе теплоты. Теплоноситель должен позволять регулировать уровень температуры. Выполнение этого условия дает возможность регулировать температурный режим потребителя теплоты. Рабочее давление теплоносителя по возможности должно быть близко к атмосферному. Это позволяет уменьшить толщину стенок трубопроводов, теплообменных аппаратов, упростить конструкцию уплотнительных устройств. Теплоноситель должен быть термостойким, т. е. не разлагаться при рабочих температурах. В противном случае продукты разложения будут загрязнять поверхности теплообмена и трубопроводов. Теплоноситель должен иметь низкую химическую активность. Выполнение этого условия позволяет при изготовлении трубопроводов, теплообменников и других элементов использовать дешевые конструкционные материалы. Теплоноситель должен быть нетоксичен или по крайней мере, иметь минимальную токсичность.
К основным теплоносителям относятся вещества: вода, водяной пар, топочные газы, горячий воздух, высокотемпературные носители
Характеристика основных видов теплоносителей, горячая вода, водяной пар, дымовые газы и воздух, как теплоносители.
К основным теплоносителям относятся следующие вещества.
Вода широко используется в качестве теплоносителя, особенно для отопления. К пре-
имуществам воды как теплоносителя следует отнести ее высокую плотность, удельную теплоемкость, сравнительно низкую вязкость, высокие значения коэффициента теплоотдачи, низкую химическую активность, не токсичность, дешевизну и доступность, возможность регулирования уровня температуры. Недостатком воды является ограниченный верхний уровень температуры (при обычно используемых на производстве давлениях до 150°С). Подогрев воды осуществляется в специальных водогрейных котлах, в нагревательных установках, ТЭЦ и котельных. Горячую воду, как правило, транспортируют по трубопроводам на расстояния до 20 км. Водяной пар – самый распространенный теплоноситель для производственных целей.Его преимуществами являются высокая теплота парообразования, высокие значения коэффициента теплоотдачи при кипении воды и при конденсации пара, возможность поддержания постоянного режима теплоиспользующего оборудования благодаря постоянству температуры при конденсации, не токсичность, доступность. Водяной пар имеет сравнительно невысокую вязкость и приемлемую плотность. Основным его недостатком является ограниченный верхний предел температуры.. Транспортировку пара осуществляют, как правило, на расстояния до 5 км.Топочные газы используют в качестве греющего теплоносителя в большинстве случаевна месте их получения для непосредственного нагревания материалов и изделий, качество которых не зависит от загрязнения продуктами сгорания. Преимуществом топочных газов является возможность их получения непосредственно у аппаратов, теплоснабжение которых они обеспечивают. При этом отпадает необходимость в теплотрассе, промежуточных теплообменниках, уменьшается металлоемкость теплоиспользующего оборудования. Применение топочных газов позволяет достичь любого практически необходимого уровня температуры и тем самым повысить производительность тепло-технологических установок. К недостаткам
топочных газов следует отнести их низкую плотность и теплоемкость, низкие значения коэффициента теплоотдачи, способность загрязнять поверхность теплообмена, пожаро опасность, токсичность.
Горячий воздух в технологии текстильного производства используют для сушки материалов, где он служит для доставки теплоты к материалу и уноса испарившейся влаги. К преимуществам горячего воздуха относятся его не токсичность и доступность. В связи с этим он, как правило, в конце цикла выбрасывается непосредственно в атмосферу. Недостатками
воздуха как теплоносителя являются низкие плотность и удельная теплоемкость, низкие значения коэффициента теплоотдачи. Перечисленные недостатки затрудняют процесс теплообмена, а также ограничивают расстояние возможной транспортировки воздуха.
Высокотемпературные теплоносители используют тогда, когда температурный уровень подвода теплоты в теплоиспользующей установке не может быть обеспечен перечисленными выше теплоносителями. Повышение температуры применяют в тех случаях, когда необходимо увеличить скорость протекания физико-химических процессов в технологических аппаратах. Ряд процессов без использования повышенных температур просто невозможно осуществить. Примером такого процесса может служить выпаривание высококипящих растворов.