- •Казахский национальный технический университет имени к.И.Сатпаева
- •Учебная программа дисциплины – Syllabus
- •Данные о преподавателе:
- •Данные о дисциплине:
- •Выписка из учебного плана
- •Пререквизиты:
- •Постреквизиты:
- •Краткое описание
- •Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •Список литературы
- •1.8 Контроль и оценка знаний.
- •Календарный график сдачи всех видов контроля
- •Политика и процедура
- •Содержание Активного раздаточного материала
- •2.2 Конспект лекционных занятий Модуль 1.
- •1.1 Источники пластовой энергии.
- •Понятие пластового давления
- •Здесь и - разность отметок забоев скважин и текущего забоев скважин и текущего положения водонефтяного контакта; - плотность воды в пластовых условиях.
- •1.2 Вывод уравнения распределения давления вокруг скважины
- •Подставляя (3) в (2) и разделяя переменные, получим
- •1.3 Режимы разработки нефтяных месторождений.
- •Водонапорный режим
- •Упругий режим
- •Режим газовой шапки
- •Режим растворенного газа
- •Гравитационный режим
- •Лекция № 2. Техника и технологии воздействия на залежь нефти. Поддержание пластового давления закачкой воды.
- •2.1 Цели и методы воздействия.
- •Поддержание давления закачкой газа:
- •Тепловые методы воздействия:
- •2.2 Водоснабжение системы поддержания пластового давления.
- •Оборудование для поддержания пластового давления
- •2.3 Технология и техника использования глубинных вод для ппд.
- •Воздействия на залежь.
- •3.1 Поддержание пластового давления закачкой газа.
- •3.2 Тепловые методы воздействия на залежь.
- •3.3 Внутрипластовое горение
- •4.1 Оборудование забоя скважины.
- •4.2 Техника перфорации скважин.
- •4.3 Методы освоения нефтяных скважин.
- •5.1 Химические методы воздействия на призабойную зону скважины.
- •5.2 Гидравлический разрыв пласта.
- •5.3 Тепловая обработка призабойной зоны скважины.
- •6.1 Исследование скважин.
- •6.2 Исследование скважин при установившихся режимах.
- •6.3 Исследование скважин при неустановившихся режимах.
- •7.1 Физика процесса движения газожидкостной смеси в вертикальной трубе.
- •7.2 Уравнение баланса давления.
- •7.3 Плотность газожидкостной смеси.
- •Плотность реальной смеси
- •Модуль 2.
- •8.1 Артезианское фонтанирование. Фонтанирование за счет энергии газа.
- •8.2 Условия фонтанирования.
- •8.3 Расчет фонтанного подъемника
- •9.1 Оборудование фонтанных скважин.
- •9.2 Регулирование работы фонтанных скважин.
- •9.3 Осложнения в работе фонтанных скважин и их предупреждение.
- •Открытое фонтанирование
- •Предупреждение отложений парафина
- •Борьба с песчаными пробками
- •Отложение солей
- •10.1 Общие принципы газлифтной эксплуатации.
- •10.2 Конструкции газлифтных подъемников.
- •10.3 Пуск газлифтной скважины в эксплуатацию.
- •11.1 Методы снижения пусковых давлений.
- •Применение специальных пусковых компрессоров
- •Последовательный допуск труб
- •Задавка жидкости в пласт
- •Применение пусковых отверстий
- •Таким образом, первое отверстие делается на глубине от устья
- •11. 2 Газлифтные клапаны.
- •Оборудование.
- •12.1 Эксплуатация скважин штанговыми насосами. Наземное оборудование.
- •Наземное оборудование
- •12.2 Оборудование устья скважины
- •Канатная подвеска
- •Штанговращатель
- •12.3 Подземное оборудование.
- •Насосные трубы
- •Лекция № 13. Условия, влияющие на работу штанговой установки. Статические и динамические нагрузки при работе глубинного насоса.
- •3.1 Условия, влияющие на работу штанговой установки.
- •Влияние утечек
- •Влияние усадки жидкости
- •3.2 Статические нагрузки при работе глубинного насоса.
- •Статические нагрузки
- •Обозначая силу тяжести 1 м штанг через
- •Напряжение в точке подвеса штанг от статической нагрузки будет
- •13.3 Динамические нагрузки
- •Добавочное напряжение в штангах от силы инерции будет равно
- •Ударные нагрузки
- •Нагрузки от вибрации колонны штанг
- •Основная частота этих колебаний равна
- •Определение максимальной нагрузки в точке подвеса насосных штанг к головке балансира
- •Лекция № 14. Принципы уравновешивания станка-качалки. Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •4.1 Принципы уравновешивания станка-качалки.
- •4.2 Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •15.1 Исследование скважин, оборудованных штанговыми насосными установками.
- •Динамометрия шсну
- •15.2 Эксплуатация скважин погружными центробежными электронасосами.
- •15.3 Определение глубины подвески пцэн
- •Планы практических (семинарских) занятий
- •Контрольные вопросы:
- •2.4 Планы лабораторных занятий
- •2.5 Планы занятий в рамках самостоятельной работы студентов под
- •2.6 Планы занятий в рамках самостоятельной работы студентов (срс)
- •2.7 Тестовые задания для самоконтроля
- •1. Что такое статическое давление
- •2. Что такое динамический уровень
- •28. Деформация штанг под действием веса жидкости по закону Гука (qж – сила тяжести 1 м жидкости, fшт – площадь сечения штанг, l–длина колонны штанг, е–модуль Юнга)
- •30. Глубина подвески пэцн
- •2.8 Экзаменационные вопросы по курсу
- •Глоссарий
- •Содержание
- •Учебно-методический комплекс дисциплины для студентов
Здесь и - разность отметок забоев скважин и текущего забоев скважин и текущего положения водонефтяного контакта; - плотность воды в пластовых условиях.
Рисунок 1. Схема наклонного пласта:
1 – водонасыщенная часть пласта; 2 – первоначальный контакт;
3 – нефтенасыщенная часть; 4 – плоскость приведения
1.2 Вывод уравнения распределения давления вокруг скважины
Вблизи каждой скважины в однородном пласте течение жидкости становится близким к радиальному. Это позволяет широко использовать для расчетов радиальную схему фильтрации.
Скорость фильтрации по закону Дарси, записанному в дифференциальной форме, определяется следующим образом:
, (4)
где
- проницаемость пласта;
- динамическая вязкость;
- градиент давления вдоль радиуса, т.е.
линии тока.
По
всем линиям тока течение будет одинаковое.
Для однородного пласта при изменении
угловой координаты скорость фильтрации
и градиент давления являются неизменными.
Это обстоятельство позволяет оценить
объемный расход жидкости
как произведение скорости фильтрации
на площадь сечения пласта. Для радиального
течения площадь сечения пласта равна
площади сечения цилиндра
произвольного радиуса
, проведенного из центра скважины, где
- действительная толщина пласта, через
который происходит фильтрация.
Тогда объемный расход жидкости равен
, (5)
где
- гидропроводность.
Предположим,
что
задано в виде известной функции радиуса,
. (6)
Подставляя (3) в (2) и разделяя переменные, получим
. (7)
Дифференциальное
уравнение (7) с разделенными переменными
может быть проинтегрировано, если задана
функция
.
Если гидропроводность не зависит от
радиуса и постоянна, то (4) легко
интегрируется в пределах области
фильтрации, т.е. от стенок скважины
с давлением
до внешней окружности
, называемой контуром питания, на котором
существует постоянное давление
.
В этом случае будем иметь
. (8)
При
будем иметь
. (9)
Из (9) получим формулу притока к центральной скважине в круговом однородном пласте:
. (10)
Если
(8) проинтегрировать при переменных
верхних пределах
и
,
то получим формулу для распределения
давления вокруг скважины:
. (11)
После интегрирования, подстановки пределов и алгебраических преобразований имеем
. (12)
Решая
уравнение относительно
и подставляя (10) в (12), получим уравнение
распределения давления вокруг скважины:
. (13)
Если в (11) в качестве переменных пределов принять не верхние, а нижние пределы, то выражение для можно записать в другом виде:
. (14)
Подставляя
в (13) или (14)
вместо переменного радиуса
,
получим
;
при
имеем другое граничное условие
.
Таким образом, граничные условия выполняются.
Из (10) и (12) следует, что функция является логарифмической, т.е. давление вблизи стенок скважины изменяется сильно, а на удаленном расстоянии – слабо. Это объясняется увеличением скоростей фильтрации при приближении струек тока к стенкам скважины, на что расходуется больший перепад давления.
Осн.: 1. [11-23]
Контрольные вопросы:
Как определяется среднее пластовое давление?
Что такое статическое давление?
Что такое динамическое давление?
Что называется статическим уровнем?
Что называется динамическим уровнем?
