- •Казахский национальный технический университет имени к.И.Сатпаева
- •Учебная программа дисциплины – Syllabus
- •Данные о преподавателе:
- •Данные о дисциплине:
- •Выписка из учебного плана
- •Пререквизиты:
- •Постреквизиты:
- •Краткое описание
- •Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •Список литературы
- •1.8 Контроль и оценка знаний.
- •Календарный график сдачи всех видов контроля
- •Политика и процедура
- •Содержание Активного раздаточного материала
- •2.2 Конспект лекционных занятий Модуль 1.
- •1.1 Источники пластовой энергии.
- •Понятие пластового давления
- •Здесь и - разность отметок забоев скважин и текущего забоев скважин и текущего положения водонефтяного контакта; - плотность воды в пластовых условиях.
- •1.2 Вывод уравнения распределения давления вокруг скважины
- •Подставляя (3) в (2) и разделяя переменные, получим
- •1.3 Режимы разработки нефтяных месторождений.
- •Водонапорный режим
- •Упругий режим
- •Режим газовой шапки
- •Режим растворенного газа
- •Гравитационный режим
- •Лекция № 2. Техника и технологии воздействия на залежь нефти. Поддержание пластового давления закачкой воды.
- •2.1 Цели и методы воздействия.
- •Поддержание давления закачкой газа:
- •Тепловые методы воздействия:
- •2.2 Водоснабжение системы поддержания пластового давления.
- •Оборудование для поддержания пластового давления
- •2.3 Технология и техника использования глубинных вод для ппд.
- •Воздействия на залежь.
- •3.1 Поддержание пластового давления закачкой газа.
- •3.2 Тепловые методы воздействия на залежь.
- •3.3 Внутрипластовое горение
- •4.1 Оборудование забоя скважины.
- •4.2 Техника перфорации скважин.
- •4.3 Методы освоения нефтяных скважин.
- •5.1 Химические методы воздействия на призабойную зону скважины.
- •5.2 Гидравлический разрыв пласта.
- •5.3 Тепловая обработка призабойной зоны скважины.
- •6.1 Исследование скважин.
- •6.2 Исследование скважин при установившихся режимах.
- •6.3 Исследование скважин при неустановившихся режимах.
- •7.1 Физика процесса движения газожидкостной смеси в вертикальной трубе.
- •7.2 Уравнение баланса давления.
- •7.3 Плотность газожидкостной смеси.
- •Плотность реальной смеси
- •Модуль 2.
- •8.1 Артезианское фонтанирование. Фонтанирование за счет энергии газа.
- •8.2 Условия фонтанирования.
- •8.3 Расчет фонтанного подъемника
- •9.1 Оборудование фонтанных скважин.
- •9.2 Регулирование работы фонтанных скважин.
- •9.3 Осложнения в работе фонтанных скважин и их предупреждение.
- •Открытое фонтанирование
- •Предупреждение отложений парафина
- •Борьба с песчаными пробками
- •Отложение солей
- •10.1 Общие принципы газлифтной эксплуатации.
- •10.2 Конструкции газлифтных подъемников.
- •10.3 Пуск газлифтной скважины в эксплуатацию.
- •11.1 Методы снижения пусковых давлений.
- •Применение специальных пусковых компрессоров
- •Последовательный допуск труб
- •Задавка жидкости в пласт
- •Применение пусковых отверстий
- •Таким образом, первое отверстие делается на глубине от устья
- •11. 2 Газлифтные клапаны.
- •Оборудование.
- •12.1 Эксплуатация скважин штанговыми насосами. Наземное оборудование.
- •Наземное оборудование
- •12.2 Оборудование устья скважины
- •Канатная подвеска
- •Штанговращатель
- •12.3 Подземное оборудование.
- •Насосные трубы
- •Лекция № 13. Условия, влияющие на работу штанговой установки. Статические и динамические нагрузки при работе глубинного насоса.
- •3.1 Условия, влияющие на работу штанговой установки.
- •Влияние утечек
- •Влияние усадки жидкости
- •3.2 Статические нагрузки при работе глубинного насоса.
- •Статические нагрузки
- •Обозначая силу тяжести 1 м штанг через
- •Напряжение в точке подвеса штанг от статической нагрузки будет
- •13.3 Динамические нагрузки
- •Добавочное напряжение в штангах от силы инерции будет равно
- •Ударные нагрузки
- •Нагрузки от вибрации колонны штанг
- •Основная частота этих колебаний равна
- •Определение максимальной нагрузки в точке подвеса насосных штанг к головке балансира
- •Лекция № 14. Принципы уравновешивания станка-качалки. Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •4.1 Принципы уравновешивания станка-качалки.
- •4.2 Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •15.1 Исследование скважин, оборудованных штанговыми насосными установками.
- •Динамометрия шсну
- •15.2 Эксплуатация скважин погружными центробежными электронасосами.
- •15.3 Определение глубины подвески пцэн
- •Планы практических (семинарских) занятий
- •Контрольные вопросы:
- •2.4 Планы лабораторных занятий
- •2.5 Планы занятий в рамках самостоятельной работы студентов под
- •2.6 Планы занятий в рамках самостоятельной работы студентов (срс)
- •2.7 Тестовые задания для самоконтроля
- •1. Что такое статическое давление
- •2. Что такое динамический уровень
- •28. Деформация штанг под действием веса жидкости по закону Гука (qж – сила тяжести 1 м жидкости, fшт – площадь сечения штанг, l–длина колонны штанг, е–модуль Юнга)
- •30. Глубина подвески пэцн
- •2.8 Экзаменационные вопросы по курсу
- •Глоссарий
- •Содержание
- •Учебно-методический комплекс дисциплины для студентов
15.3 Определение глубины подвески пцэн
Глубина подвески насоса определяется:
1) глубиной динамического уровня жидкости в скважине Нд при отборе заданного количества жидкости;
2) глубиной погружения ПЦЭН под динамический уровень Hп, минимально необходимый для обеспечения нормальной работы насоса;
3) противодавлением на устье скважины ру, которое необходимо преодолеть;
4) потерями напора на преодоление сил трения в НКТ при движении потока hтр;
5) работой выделяющегося из жидкости газа Hг, уменьшающего суммарный необходимый напор. Таким образом, можно записать
H= Hд + Hп + ру/ρg + hтр – Hг. (1)
По существу все слагаемые в (1) зависят от отбора жидкости из скважины.
Глубина динамического уровня определяется из уравнения притока или по индикаторной кривой.
Если уравнение притока известно
,
то, решая его относительно давления на забое рс и приведя это давление в столб жидкости получим
(2)
или
,
откуда
.
(3)
где ρср — средняя плотность столба жидкости в скважине от забоя до уровня; h — высота столба жидкости от забоя до динамического уровня по вертикали.
Вычитая h из глубины скважины (до середины интервала перфорации) Нс, получим глубину динамического уровня НД от устья
НД = Нс − h. (4)
Если скважины наклонны и φ1 — средний угол наклона относительно вертикали на участке от забоя до уровня, а φ2 — средний угол наклона относительно вертикали на участке от уровня до устья, то необходимо внести поправки на кривизну скважины.
С учетом кривизны искомое Нд будет равно
(5)
Здесь Нс — глубина скважины, измеренная вдоль ее оси.
Величина Нп— погружение под динамический уровень, при наличии газа определяется сложно. Как правило, Нп принимается таким, чтобы на приеме ЭЦЭН обеспечить за счет давления столба жидкости газосодержание β потока, не превышающее 0,15—0,25. В большинстве случаев это соответствует 150—300 м.
Величина ру/ρg есть устьевое давление, выраженное в метрах столба жидкости плотностью ρ. Если продукция скважины обводнена и n — доля воды в единице объема продукции скважины, то плотность жидкости определяется как средневзвешенная
.
(6)
Здесь ρн, ρв — плотности нефти и воды.
Величина ру зависит от системы нефтегазосбора, удаленности данной скважины от сепарационных пунктов и в некоторых случаях может составлять значительную величину.
Величина hтр рассчитывается по обычной формуле трубной гидравлики
,
(7)
где с — линейная скорость потока, м/с,
. (8)
Здесь Qн и Qв — дебит товарной нефти и воды, м3/сут; bн и bв — объемные коэффициенты нефти и воды для средних термодинамических условий, существующих в НКТ; f — площадь сечения НКТ.
Как правило, — малая величина и составляет примерно 20—40 м.
Величину Нг можно определить достаточно точно. Однако такой расчет сложный и, как правило, проводится на ЭВМ.
Приведем упрощенный расчет процесса движения ГЖС в НКТ. На выкиде насоса жидкость содержит в себе растворенный газ. При снижении давления газ выделяется и способствует подъему жидкости, снижая тем самым необходимый напор на величину Нг. По этой причине в уравнение (1) Нг входит с отрицательным знаком.
Для согласования H(Q) характеристики ЭЦН с условиями скважины строится так называемая напорная характеристика скважины (рис. 7)
(9)
в зависимости от ее дебита.
Рисунок 2. Напорные характеристики скважины:
1 - глубина (от устья) динамического уровня, 2 — необходимый напор с учетом давления на устье, 3 — необходимый напор с учетом сил трения, 4 — результирующий напор с учетом «газлифтного эффекта»
На рис. 2 показаны кривые изменения слагаемых в уравнении (9) от дебита скважины и определяющих результирующую напорную характеристику скважины Hсвк(Q).
Линия 1— зависимость Нд(Q), определяемая по формуле (5) и (3) и строится по точкам для различных произвольно выбранных Q. Очевидно, при Q = 0 Нд = Нст, т. е. динамический уровень совпадает со статическим.
Прибавляя к Нд величину буферного давления, выраженного в м столба жидкости (pу/gρ), получим линию 2 — зависимость этих двух слагаемых от дебита скважины. Вычисляя по формуле (7) для разных Q величину hтр и прибавляя вычисленные hтр к ординатам линии 2 получим линию 3 — зависимость первых трех слагаемых в (9) от дебита скважины. Вычисляя величину Нг по формуле
и вычитая ее значение от ординат линии 3, получим результирующую линию 4, называемую напорной характеристикой скважины.
На напорную характеристику скважины накладывается Н (Q) —характеристика насоса для отыскания точки их пересечения, определяющей такой дебит скважины, который будет равен подаче. ПЦЭН при совместной работе насоса и скважины (рис. 8).
Рисунок 3. Согласование напорной характеристики скважины (1) с Н(Q), характеристикой ПЦЭН (2), 3 — линия к. п. д.
Точка А — пересечение характеристик скважины (рис. 8, кривая 1) и ПЦЭН (рис. 3, кривая 2). Абсцисса точки А дает дебит скважины при совместной работе скважины и насоса, а ордината — напор Н, развиваемый насосом.
Для эффективной и экономичной работы необходимо подобрать ПЦЭН с такими характеристиками, чтобы точка пересечения характеристик совпала бы с максимальным к. п. д. (рис. XI.8, кривая 3) (точка В) или, по крайней мере, лежала бы в области рекомендованных режимов работы данного насоса (см. рис. 3, штриховка).
В некоторых случаях для согласования характеристики скважины и ПЦЭН повышают противодавление на устье скважины с помощью штуцера или снимают лишние рабочие ступени в насосе и заменяют их направляющими вкладышами (рис. 4).
Рисунок 4. Согласование напорной характеристики скважины и ПЦЭН путем снятия ступеней
Как видим, точка А пересечения характеристик получилась в этом случае за пределами заштрихованной области. Желая обеспечить работу насоса на режиме ηmax (точка Д), находим подачу насоса (дебит скважины) Qскв, соответствующую этому режиму. Напор, развиваемый насосом при подаче Qскв на режиме ηmax, определяется точкой В. В действительности при этих условиях работы необходимый напор определится точкой С.
Разница ВС = ΔН есть избыточный напор. В этом случае можно повысить давление на устье скважины на Δp = ΔHρg установкой штуцера или снять часть рабочих ступеней насоса и заменить их вкладышами. Число снимаемых ступеней насоса определяется из простого соотношения
Δz=z0ΔH/H0. (10)
Здесь z0 — общее число ступеней в насосе; H0 — напор, развиваемый насосом при полном числе ступеней.
С энергетической точки зрения штуцирование на устье для согласования характеристик невыгодно, так как приводит к пропорциональному снижению к. п. д. установки. Снятие ступеней позволяет сохранить к. п. д. на прежнем уровне или даже несколько повысить его. Однако разобрать насос и заменить рабочие ступени вкладышами можно лишь в специализированных цехах.
При описанном выше согласовании характеристик скважины насоса необходимо, чтобы Н (Q) характеристика ПЦЭН соответствовала действительной характеристике при его работе на скважинной жидкости определенной вязкости и при определенном газосодержании на приеме. Паспортная характеристика H(Q) определяется при работе насоса на воде и, как правило, является завышенной. Поэтому важно иметь действительную характеристику ПЦЭН, прежде чем согласовывать ее с характеристикой скважины. Наиболее надежный метод получения действительной характеристики насоса — это его стендовые испытания на скважинной жидкости при заданном проценте обводненности.
Осн.: 1. [418-439], 3. [669-679]
Контрольные вопросы:
В каких скважинах применяется ПЦЭН?
Назначение компенсатора?
Назначение протектора в ПЦЭН?
Как определяется глубина подвески ПЦЭН?
