- •Казахский национальный технический университет имени к.И.Сатпаева
- •Учебная программа дисциплины – Syllabus
- •Данные о преподавателе:
- •Данные о дисциплине:
- •Выписка из учебного плана
- •Пререквизиты:
- •Постреквизиты:
- •Краткое описание
- •Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •Список литературы
- •1.8 Контроль и оценка знаний.
- •Календарный график сдачи всех видов контроля
- •Политика и процедура
- •Содержание Активного раздаточного материала
- •2.2 Конспект лекционных занятий Модуль 1.
- •1.1 Источники пластовой энергии.
- •Понятие пластового давления
- •Здесь и - разность отметок забоев скважин и текущего забоев скважин и текущего положения водонефтяного контакта; - плотность воды в пластовых условиях.
- •1.2 Вывод уравнения распределения давления вокруг скважины
- •Подставляя (3) в (2) и разделяя переменные, получим
- •1.3 Режимы разработки нефтяных месторождений.
- •Водонапорный режим
- •Упругий режим
- •Режим газовой шапки
- •Режим растворенного газа
- •Гравитационный режим
- •Лекция № 2. Техника и технологии воздействия на залежь нефти. Поддержание пластового давления закачкой воды.
- •2.1 Цели и методы воздействия.
- •Поддержание давления закачкой газа:
- •Тепловые методы воздействия:
- •2.2 Водоснабжение системы поддержания пластового давления.
- •Оборудование для поддержания пластового давления
- •2.3 Технология и техника использования глубинных вод для ппд.
- •Воздействия на залежь.
- •3.1 Поддержание пластового давления закачкой газа.
- •3.2 Тепловые методы воздействия на залежь.
- •3.3 Внутрипластовое горение
- •4.1 Оборудование забоя скважины.
- •4.2 Техника перфорации скважин.
- •4.3 Методы освоения нефтяных скважин.
- •5.1 Химические методы воздействия на призабойную зону скважины.
- •5.2 Гидравлический разрыв пласта.
- •5.3 Тепловая обработка призабойной зоны скважины.
- •6.1 Исследование скважин.
- •6.2 Исследование скважин при установившихся режимах.
- •6.3 Исследование скважин при неустановившихся режимах.
- •7.1 Физика процесса движения газожидкостной смеси в вертикальной трубе.
- •7.2 Уравнение баланса давления.
- •7.3 Плотность газожидкостной смеси.
- •Плотность реальной смеси
- •Модуль 2.
- •8.1 Артезианское фонтанирование. Фонтанирование за счет энергии газа.
- •8.2 Условия фонтанирования.
- •8.3 Расчет фонтанного подъемника
- •9.1 Оборудование фонтанных скважин.
- •9.2 Регулирование работы фонтанных скважин.
- •9.3 Осложнения в работе фонтанных скважин и их предупреждение.
- •Открытое фонтанирование
- •Предупреждение отложений парафина
- •Борьба с песчаными пробками
- •Отложение солей
- •10.1 Общие принципы газлифтной эксплуатации.
- •10.2 Конструкции газлифтных подъемников.
- •10.3 Пуск газлифтной скважины в эксплуатацию.
- •11.1 Методы снижения пусковых давлений.
- •Применение специальных пусковых компрессоров
- •Последовательный допуск труб
- •Задавка жидкости в пласт
- •Применение пусковых отверстий
- •Таким образом, первое отверстие делается на глубине от устья
- •11. 2 Газлифтные клапаны.
- •Оборудование.
- •12.1 Эксплуатация скважин штанговыми насосами. Наземное оборудование.
- •Наземное оборудование
- •12.2 Оборудование устья скважины
- •Канатная подвеска
- •Штанговращатель
- •12.3 Подземное оборудование.
- •Насосные трубы
- •Лекция № 13. Условия, влияющие на работу штанговой установки. Статические и динамические нагрузки при работе глубинного насоса.
- •3.1 Условия, влияющие на работу штанговой установки.
- •Влияние утечек
- •Влияние усадки жидкости
- •3.2 Статические нагрузки при работе глубинного насоса.
- •Статические нагрузки
- •Обозначая силу тяжести 1 м штанг через
- •Напряжение в точке подвеса штанг от статической нагрузки будет
- •13.3 Динамические нагрузки
- •Добавочное напряжение в штангах от силы инерции будет равно
- •Ударные нагрузки
- •Нагрузки от вибрации колонны штанг
- •Основная частота этих колебаний равна
- •Определение максимальной нагрузки в точке подвеса насосных штанг к головке балансира
- •Лекция № 14. Принципы уравновешивания станка-качалки. Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •4.1 Принципы уравновешивания станка-качалки.
- •4.2 Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •15.1 Исследование скважин, оборудованных штанговыми насосными установками.
- •Динамометрия шсну
- •15.2 Эксплуатация скважин погружными центробежными электронасосами.
- •15.3 Определение глубины подвески пцэн
- •Планы практических (семинарских) занятий
- •Контрольные вопросы:
- •2.4 Планы лабораторных занятий
- •2.5 Планы занятий в рамках самостоятельной работы студентов под
- •2.6 Планы занятий в рамках самостоятельной работы студентов (срс)
- •2.7 Тестовые задания для самоконтроля
- •1. Что такое статическое давление
- •2. Что такое динамический уровень
- •28. Деформация штанг под действием веса жидкости по закону Гука (qж – сила тяжести 1 м жидкости, fшт – площадь сечения штанг, l–длина колонны штанг, е–модуль Юнга)
- •30. Глубина подвески пэцн
- •2.8 Экзаменационные вопросы по курсу
- •Глоссарий
- •Содержание
- •Учебно-методический комплекс дисциплины для студентов
Оборудование.
12.1 Эксплуатация скважин штанговыми насосами. Наземное оборудование.
Эксплуатация скважин штанговыми скважинными насосами (ШСН) широко распространена на большой части нефтедобывающих месторождений мира.
Оборудование для эксплуатации скважин штанговыми насосами, включает:
глубинный плунжерный насос;
систему насосных труб и штанг, на которых насос подвешивается в скважине;
приводную часть индивидуальной штанговой установки балансирного типа, состоящую из станка – качалки и двигателя;
устьевое оборудование скважин, предназначенное для подвески насосных труб и герметизации устья;
приспособления для подвески насосных штанг к головке балансира станка-качалки.
В скважину на колонке насосно-компрессорных труб (НКТ) под уровень жидкости спускают цилиндр насоса, в нижней части которого установлен приемный клапан, открывающейся только вверх. Затем на насосных штангах внутрь НКТ спускают поршень, называемый плунжером, который устанавливают в цилиндр насоса. Плунжер имеет один или два клапана, открывающихся только вверх, называемых выкидными или нагнетательными.
Верхний конец штанг прикрепляют к головке переднего плеча балансира станка-качалки.
Для направления жидкости из насосно-компрессорных труб в нефтепровод и предотвращения ее разлива на устье скважины, устанавливают тройник и выше него сальник через которых пропускают сальниковых (полированных) шток.
Скважинный насос приводится в действие от станка-качалки, в котором вращательное движение, получаемое от двигателя , при помощи редуктора кривошипно-шатунного механизма и балансира преобразуется в возвратно-поступательное движение. Это движение передается плунжеру скважинного насоса.
При ходе плунжера вверх под ним падает давление и всасывающий клапан под давлением столба жидкости в затрубном пространстве открывается, после этого жидкость из скважины поступает в цилиндр насоса. В это время нагнетательный клапан плунжера закрыт под давлением столба находящейся над ним жидкости.
При ходе плунжера вниз приемный клапан под давлением столба жидкости в насосных трубах закрывается, а клапан , расположенный на плунжере, открывается, и жидкость наступает в насосно-компрессорные трубы.
При непрерывной работе плунжера всасывание и нагнетание чередуются, в результате чего при каждом ходе некоторое количество жидкости поступает в насосные трубы. Уровень жидкости в НКТ повышается и достигает устья скважины, жидкость начинает переливаться в выкидную линию через тройник с сальниковым устройством.
Наземное оборудование
Индивидуальный механический привод штанговых скважинных насосов осуществляется станком-качалкой.
Основные узлы станка-качалки: рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно подвешенная к балансиру, редуктор с кривошипами и противовесами.
В комплект входит набор сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.
Станки-качалки выпускаются различных типа размеров, что обеспечивает возможность работы штанговых скважинных насосов различных диаметров, спускаемых на разную глубину, получения необходимой длины хода устьевого штока и крутящего момента на ведомом валу редуктора.
Редуктор предназначен для уменьшения тела оборотов, передаваемых от электродвигателя кривошипам станка-качалки.
На нефтяных промыслах в эксплуатации имеются СК различных типоразмеров и конструкций. В механическом и кинематическом отношении они достаточно совершенны (рис. 2). В шифре СК указывается грузоподъемность, максимальный ход и допустимый момент на валу редуктора.
Пример шифра СКЗ—1,2—630. Это означает: грузоподъемность станка-качалки — 3 т, максимальный ход—1,2 м, наибольший крутящий момент на валу редуктора — 630 кгс·м. Таким образом, в самом шифре указываются важнейшие характеристики СК.
Предусмотрено механизированное плавное перемещение кри-вошипных противовесов, при котором достигается лучшее уравновешивание СК.
Качалки оборудованы двухколодочным тормозом с ручным приводом. Тормозной барабан закреплен на трансмиссионном валу редуктора. С помощью тормоза балансир и противовесы качалки могут быть зафиксированы в любом положении. Электродвигатель устанавливается на салазках, наклон которых регулируется для достижения необходимого натяжения тиксотропных ремней трансмиссионной передачи. Изменение длины хода балансира достигается перестановкой пальца шатуна на кривошипе, а изменение числа качаний достигается сменой шкива на валу электродвигателя на другой размер. Кроме описанных балансирных станков-качалок существует много других индивидуальных приводов для штанговых насосных установок, не получивших, однако, широкого распространения. К числу таких приводов можно отнести безбалансирные станки-качалки, в которых возвратно-поступательное движение штанг осуществляется с помощью цепи или канатов, перекинутых через шкивы-звездочки, укрепленные на наклонной к устью скважины пирамиде-опоре. Канатная подвеска (или цепь) прикрепляется к штангам, а другим концом к кривошипу редуктора.
Рисунок 2. Схема балансирного станка-качалки:
1 — канатная подвеска, 2 — балансир с поворотной головкой, 3 — опора балансира, 4 — стойка, 5 — шатун, 6 — кривошип, 7 — редуктор, 8 —ведомый шкив, 9 — клиноременная передача, 10 — электромотор, 11 — ведущий шкив, 12 — ограждения, 13 — салазки поворотные для электромотора, 14 — рама, 15 — противовес, 16 — траверса, 17 — тормозной шкив
При вращении вала редуктора и укрепленных на валу кривошипов канаты подвески и колонна штанг совершают возвратно-поступательное движение. Отсутствие тяжелого высокоподнятого на пирамиде-стойке балансира позволяет уменьшить массу безбалансирных станков и несколько улучшить кинематику привода. Безбалансирные СК уравновешиваются с помощью противовесов, укрепляемых на кривошипе, как и у балансирных СК. Однако центр тяжести противовеса имеет по отношению к точке прикрепления шатунов угловое смещение, зависящее от наклона линии, соединяющей центры вращения шкивов на опоре и оси главного вала кривошипа.
Существуют балансирные СК с гидропневматическим и пневматическим уравновешиванием. Эти станки более компактные, чем обычные балансирные, имеют более плавный ход, меньшие инерционные нагрузки. Однако они сложнее в изготовлении, дороже и, несмотря на некоторое уменьшение габаритных размеров, более металлоемки. Уравновешивание в них достигается как зa счет использования роторных противовесов, так и за счет сжатия воздуха в специальном цилиндре с перемещающимся в нем поршнем. Кроме того, на СК с пневматическим уравновешиванием обязательно имеется небольшой одноцилиндровый компрессор для подкачки воздуха в систему уравновешивания. Разработаны гидравлические качалки, состоящие из длинного цилиндра и движущегося в нем поршня, соединенного непосредственно с колонной штанг. Цилиндр устанавливается вертикально над устьем скважины. Возвратно-поступательное движение поршня и штанг достигается путем переключения золотниковым устройством нагнетаемой силовым насосом жидкости в полости цилиндра. В качестве силового используется обычно шестеренчатый насос с приводом от электродвигателя. Уравновешивание осуществляется за счет противоположного по фазе перемещения насосных труб с гидравлической подвеской. Гидравлические качалки очень компактны, имеют массу в 2— 2,5 раза меньшую, чем обычные балансирные СК, плавный ход, однако существенным их недостатком является перемещение НКТ, дополнительные уплотнительные сальниковые элементы и длинные силовые цилиндры, изготовление которых требует совершенной технологии.
