- •Казахский национальный технический университет имени к.И.Сатпаева
- •Учебная программа дисциплины – Syllabus
- •Данные о преподавателе:
- •Данные о дисциплине:
- •Выписка из учебного плана
- •Пререквизиты:
- •Постреквизиты:
- •Краткое описание
- •Перечень и виды заданий и график их выполнения:
- •Виды заданий и сроки их выполнения
- •Список литературы
- •1.8 Контроль и оценка знаний.
- •Календарный график сдачи всех видов контроля
- •Политика и процедура
- •Содержание Активного раздаточного материала
- •2.2 Конспект лекционных занятий Модуль 1.
- •1.1 Источники пластовой энергии.
- •Понятие пластового давления
- •Здесь и - разность отметок забоев скважин и текущего забоев скважин и текущего положения водонефтяного контакта; - плотность воды в пластовых условиях.
- •1.2 Вывод уравнения распределения давления вокруг скважины
- •Подставляя (3) в (2) и разделяя переменные, получим
- •1.3 Режимы разработки нефтяных месторождений.
- •Водонапорный режим
- •Упругий режим
- •Режим газовой шапки
- •Режим растворенного газа
- •Гравитационный режим
- •Лекция № 2. Техника и технологии воздействия на залежь нефти. Поддержание пластового давления закачкой воды.
- •2.1 Цели и методы воздействия.
- •Поддержание давления закачкой газа:
- •Тепловые методы воздействия:
- •2.2 Водоснабжение системы поддержания пластового давления.
- •Оборудование для поддержания пластового давления
- •2.3 Технология и техника использования глубинных вод для ппд.
- •Воздействия на залежь.
- •3.1 Поддержание пластового давления закачкой газа.
- •3.2 Тепловые методы воздействия на залежь.
- •3.3 Внутрипластовое горение
- •4.1 Оборудование забоя скважины.
- •4.2 Техника перфорации скважин.
- •4.3 Методы освоения нефтяных скважин.
- •5.1 Химические методы воздействия на призабойную зону скважины.
- •5.2 Гидравлический разрыв пласта.
- •5.3 Тепловая обработка призабойной зоны скважины.
- •6.1 Исследование скважин.
- •6.2 Исследование скважин при установившихся режимах.
- •6.3 Исследование скважин при неустановившихся режимах.
- •7.1 Физика процесса движения газожидкостной смеси в вертикальной трубе.
- •7.2 Уравнение баланса давления.
- •7.3 Плотность газожидкостной смеси.
- •Плотность реальной смеси
- •Модуль 2.
- •8.1 Артезианское фонтанирование. Фонтанирование за счет энергии газа.
- •8.2 Условия фонтанирования.
- •8.3 Расчет фонтанного подъемника
- •9.1 Оборудование фонтанных скважин.
- •9.2 Регулирование работы фонтанных скважин.
- •9.3 Осложнения в работе фонтанных скважин и их предупреждение.
- •Открытое фонтанирование
- •Предупреждение отложений парафина
- •Борьба с песчаными пробками
- •Отложение солей
- •10.1 Общие принципы газлифтной эксплуатации.
- •10.2 Конструкции газлифтных подъемников.
- •10.3 Пуск газлифтной скважины в эксплуатацию.
- •11.1 Методы снижения пусковых давлений.
- •Применение специальных пусковых компрессоров
- •Последовательный допуск труб
- •Задавка жидкости в пласт
- •Применение пусковых отверстий
- •Таким образом, первое отверстие делается на глубине от устья
- •11. 2 Газлифтные клапаны.
- •Оборудование.
- •12.1 Эксплуатация скважин штанговыми насосами. Наземное оборудование.
- •Наземное оборудование
- •12.2 Оборудование устья скважины
- •Канатная подвеска
- •Штанговращатель
- •12.3 Подземное оборудование.
- •Насосные трубы
- •Лекция № 13. Условия, влияющие на работу штанговой установки. Статические и динамические нагрузки при работе глубинного насоса.
- •3.1 Условия, влияющие на работу штанговой установки.
- •Влияние утечек
- •Влияние усадки жидкости
- •3.2 Статические нагрузки при работе глубинного насоса.
- •Статические нагрузки
- •Обозначая силу тяжести 1 м штанг через
- •Напряжение в точке подвеса штанг от статической нагрузки будет
- •13.3 Динамические нагрузки
- •Добавочное напряжение в штангах от силы инерции будет равно
- •Ударные нагрузки
- •Нагрузки от вибрации колонны штанг
- •Основная частота этих колебаний равна
- •Определение максимальной нагрузки в точке подвеса насосных штанг к головке балансира
- •Лекция № 14. Принципы уравновешивания станка-качалки. Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •4.1 Принципы уравновешивания станка-качалки.
- •4.2 Эксплуатация скважин штанговыми насосами в осложненных условиях.
- •15.1 Исследование скважин, оборудованных штанговыми насосными установками.
- •Динамометрия шсну
- •15.2 Эксплуатация скважин погружными центробежными электронасосами.
- •15.3 Определение глубины подвески пцэн
- •Планы практических (семинарских) занятий
- •Контрольные вопросы:
- •2.4 Планы лабораторных занятий
- •2.5 Планы занятий в рамках самостоятельной работы студентов под
- •2.6 Планы занятий в рамках самостоятельной работы студентов (срс)
- •2.7 Тестовые задания для самоконтроля
- •1. Что такое статическое давление
- •2. Что такое динамический уровень
- •28. Деформация штанг под действием веса жидкости по закону Гука (qж – сила тяжести 1 м жидкости, fшт – площадь сечения штанг, l–длина колонны штанг, е–модуль Юнга)
- •30. Глубина подвески пэцн
- •2.8 Экзаменационные вопросы по курсу
- •Глоссарий
- •Содержание
- •Учебно-методический комплекс дисциплины для студентов
10.2 Конструкции газлифтных подъемников.
Два канала, необходимых для работы газлифтной скважины в реальных условиях, создаются двумя рядами концентрично расположенных труб, т. е. спуском в скважину первого (внешнего) и второго (внутреннего) рядов труб. Внешний ряд труб большего диаметра (обычно 73—102 мм) спускается первым. Внутренний, меньшего диаметра (обычно 48, 60, 73 мм) спускается вторым внутрь первого ряда. Образуется так называемый двухрядный подъемник, в котором, как правило, сжатый газ подается в межтрубное пространство между первым и вторым рядами труб, а ГЖС поднимается по внутреннему, втором ряду труб (рис. 2, а). Первый ряд труб обычно спускается до интервала перфорации, а второй под динамический уровень на глубину, соответствующую рабочему давлению газа, так как погружение башмака НКТ под динамический уровень, выраженное в единицах давления, всегда равно рабочему давлению газа.
Рисунок 2. Схема конструкций газлифтных подъемников:
а — двухрядный подъемник; б — полуторарядный подъемник; в — однорядный подъемник; г — однорядный подъемник с рабочим отверстием
В газлифтной скважине, оборудованной двухрядным подъемником, реальный динамический уровень устанавливается во внешнем межтрубном пространстве — между обсадной колонной и первым рядом труб. Если межтрубное пространство перекрыто и там имеется некоторое давление газа, то действительное, а, следовательно, и рабочее давление будет складываться из погружения под уровень и гидростатического давления газа во внешнем межтрубном пространстве:
или
(2)
Двухрядные подъемники раньше применялись широко, особенно когда эксплуатация скважин осложнялась выделением песка, который нужно было выносить на поверхность. Скорость восходящего потока при движении по первому ряду труб больше, чем при движении по обсадной колонне. Поэтому башмак первого ряда спускался, как правило, до забоя. В то же время при необходимости можно было легко изменять погружение второго ряда труб в связи с изменением динамического уровня, увеличением отбора или по другим причинам. При таком изменении первый ряд труб остается на месте. Однако двухрядный подъемник сооружение металлоемкое, а поэтому дорогое. Лишь при отсутствии герметичности обсадной колонны его применение оправдано как вынужденная мера. Разновидностью двухрядного подъемника является полуторарядный (рис. 2, б) в котором для экономии металла трубы первого ряда имеют хвостовую часть (ниже башмака второго ряда) из труб меньшего диаметра. Это существенно уменьшает металлоемкость конструкции, позволяет увеличить скорость восходящего потока, но осложняет операцию по увеличению погружения, т. е. по допуску второго ряда, так как для этого необходимо предварительно изменить подвеску первого ряда труб. Схема однорядного наименее металлоемкого подъемника приведена на рис. 2, в. Газ подается в межтрубное пространство и ГЖС поднимается по одному ряду труб, диаметр которых определяется дебитом скважины и техническими условиями ее эксплуатации. Реальный уровень жидкости всегда устанавливается у башмака подъемных труб. Уровень не может быть выше, так как в этом случае газ не будет поступать в НКТ. Он не может быть и ниже башмака, так как тогда в НКТ не будет поступать жидкость. Однако при пульсирующем режиме работы газожидкостного подъемника уровень жидкости колеблется у башмака, периодически его перекрывая. Видимого погружения и динамического уровня жидкости при однородном подъемнике нет, а гидростатическое давление у башмака подъемных труб, создаваемое погружением его под динамический уровень, заменяется давлением газа .
Положение динамического уровня (называемого иногда условным) как обычно определяется рабочим давлением газа , пересчитанным в соответствующую высоту столба жидкости (см. рис. 2, в). На рис. 2, e показан пьезометр, присоединенный к скважине. В таком пьезометре устанавливается реальный динамический уровень, соответствующий рабочему давлению. Недостатком однорядного подъемника является низкая скорость восходящего потока между забоем и башмаком, глубина спуска которого определяется рабочим давлением газа, отбором жидкости, а также коэффициентом продуктивности скважины. Однако при этом упрощается допуск труб или вообще изменение глубины их подвески, если возникает такая необходимость. Поэтому существует разновидность однорядного подъемника г- подъемник с рабочим отверстием (см. рис. 2,г). Один ряд труб необходимого диаметра спускается до забоя (или до верхних дыр перфорации), но на расчетной глубине, т. е. на глубине, где должен быть башмак (глубина места ввода газа в НКТ), устанавливается рабочая муфта с двумя-четырьмя отверстиями диаметром 5—8 мм. Сечение отверстий должно обеспечить пропуск расчетного количества газа при перепаде давлений у отверстий, не превышающем 0,1—0,15 МПа. Перепад давления у отверстий удерживает уровень жидкости ниже отверстия на 10—15 м и обеспечивает более равномерное поступление газа в трубы.
Рисунок 3. Принципиальная схема концевого клапана:
1 — конический клапан; 2 — рабочее отверстие, 3 — регулировочная головка для изменения натяжения пружин; 4 — шариковый клапан для промывки скважин
Рисунок 4. Положение уровней жидкости при пуске газлифтной скважины
Однорядный
подъемник с рабочим отверстием (или
муфтой) создает наибольшие скорости
восходящего потока, является наименее
металлоемким, однако требует подъема
колонны труб при необходимости изменения
погружения. Положение условного
динамического уровня и погружение
определяются рабочим давлением газа у
рабочих отверстий, пересчитанным в
столб жидкости. Однорядная конструкция
газлифта, при котором используются
60-мм или 73-мм трубы, создает широкое
межтрубное пространство, размеры
которого играют решающую роль в случае
использования различных клапанов.
В однорядном подъемнике вместо рабочей
муфты с рабочими отверстиями может
применяться так называемый концевой
рабочий клапан, поддерживающий постоянный
перепад давления при прохождении
через него газа, равны
МПа,
достаточный для того, чтобы постоянно
удерживать уровень жидкости ниже
клапана на 10—15 м. Концевой клапан
обычно приваривается к спецмуфте с
внешней стороны и имеет пружинную
регулировку необходимого перепада
давления и расхода газа. Такой клапан
снабжается еще специальным шариковым
клапаном, который закрывает рабочее
отверстие и позволяет осуществлять
обратную промывку скважины до забоя
(рис 3).
Необходимо отметить, что любая конструкция газлифтного подъемника может работать по двум схемам. В одном случае сжатый газ подается в межтрубное пространство, а ГЖС движется по центральной колонне труб. Эта схема обычная (см. рис.2, а, б, в, г) и называется кольцевой, так как газ направляется в кольцевое пространство.
В другом случае сжатый газ можно подавать в центральную колонну труб, а ГЖС в этом случае будет подниматься по кольцевому пространству. Такая схема называется центральной, так как газ закачивается в центральные трубы. Почти все газлифтные скважины работают по кольцевой схеме, так как поперечное сечение кольцевого пространства, как правило, больше сечения центральных труб и оптимальные условия работы по нему могут быть достигнуты только при больших дебитах. Кроме того, при отложении парафина его удаление с внутренних стенок обсадной колонны или первого ряда труб практически невозможно.
Осн.: 1. [296-302], 3. [530-536]
Контрольные вопросы:
Какие существуют системы газлифтной эксплуатации?
Какие существуют конструкции газлифтных подъемников?
По каким схемам работают газлифтные подъемники?
