
- •Раздел 1основы аналоговой схемотехники
- •Введение
- •Общие сведения об аналоговых
- •Электронных устройствах
- •Усилителя
- •Тема 1.2 Принцип электронного усиления
- •Тема 1.3 Классификация аэу
- •Тема 1.4 Стабильность показазателей аэу
- •Тема 1.1 Основные технические параметры и характеристики аэу
- •1.1.1Входное и выходное сопротивление. Коэффициенты
- •Усиления
- •1.2 Амплитудно-частотная характеристика (ачх) и фазочастотная характеристика(фчх)
- •Характеристика
- •1.1.2 Переходная, динамическая, амплитудная характеристики. Динамический диапазон
- •1.1.3 Нелинейные искажения(ни)
- •1.1.4 Коэффициент полезного действия
- •1.1.5 Собственные помехи
- •1.1.6 Стабильность показателей аэу
- •Тема 1.2 Методы обеспечения режима работы биполярных и полевых транзисторов в каскадах усиления
- •1.2.1 Схема с фиксированным током базы
- •1.2.2 Схема с фиксированным напряжением база – эмиттер
- •1.2.3 Схемы с температурной стабилизацией
- •1.2.4 Стабильность рабочей точки
- •1.2.5 Способы задания режима покоя в усилительных каскадах на полевых транзисторах
- •Переходом; б – со встроенным каналом; г – с индуцированным каналом
- •1.2.6 Обратные связи в усилителях
- •1.2.7 Последовательная обратная связь по напряжению
- •Усилителя с обратной и без обратной связи
- •1.2.8 Последовательная обратная связь по току
- •1.2.9. Режимы работы усилительных каскадов
- •1.2.10 Работа активных элементов с нагрузкой
- •Каскада с нагрузкой в режиме классаА
- •1.2.11 Усилительный каскад с общим эмиттером
- •Резисторного каскада в схеме с оэ
- •1.2.12 Усилительный каскад по схеме с общей базой
- •1.2.13 Усилительный каскад с общим коллектором (эмиттерный повторитель)
- •Тема 1.3Многокаскадные усилители
- •1.3.1 Особенности построения многокаскадных усилительных трактов
- •1.3.2 Способы межкаскадных связей Усилители с непосредственными межкаскадными связями.
- •Межкаскадными связями
- •Усилители с гальваническими межкаскадными связями.
- •Каскады и цепи с емкостной связью.
- •Трансформаторная межкаскадная связь.
- •1.3.3 Оптроны как элементы межкаскадных связей и гальванических развязок
- •1.3.4 Составные транзисторы. Каскодная схема.
- •Раздел 2 основы аналоговой микросхемотехники
- •Тема 2.1 Особенности элементов интегральной микросхемотехники
- •2.1.1 Генераторы стабильного тока (гст), генераторы малого стабильного напряжения (гмсн) и схемы сдвига уровня
- •Напряжения
- •Схемы сдвига уровня:
- •2.1.2 Каскад на двух транзисторах с эмиттерной связью
- •Эмиттерной связью
- •2.1.3 Работа каскада в качестве фазоинверсного
- •2.1.4 Работа каскада в качестве дифференциального
- •2.1.5 Токовое зеркало(тз). Типовые схемы тз
- •4.6 Типовые схемы тз
- •2.1.6 Усложнённые входные дифференциальные каскады(дк)
- •2.1.7 Входные каскады на транзисторах супер-бэта
- •Супер-бэта
- •2.1.8 Унч на интегральных микросхемах
- •2.1.9 Широкополосные интегральные усилители(шиу)
- •Усилителей
- •2.1.10 Оконечные каскады интегральных усилителей
- •Усилителей
- •Тема 2.2Интегральные операционныеусилители
- •2.2.1 Основные параметры и типы оу
- •2.2.2 Классификация операционных усилителей (оу). Устройство оу. Требования к оу.
- •2.2.3 Амплитудно-частотные, фазочастотные, амплитудные характеристики оу.
- •Инвертирующий усилитель
- •Неинвертирующий усилитель
- •Дифференциальный усилитель
- •Усилитель, построенный на одном операционном усилителе (оу)
- •Сдвиги нуля и их компенсация
- •Схемы ручной балансировки нуля
- •Усилители переменного напряжения на базе оу.
- •Тема 2.3 Устойчивость усилителей с обратной связью и способы ее обеспечения
- •Устойчивость работы усилителей с оос
- •Критерии устойчивости Найквиста и Боде. Запасы устойчивости.
- •Найквиста
- •Устойчивости Боде
- •Методы частотной коррекции интегральных усилителей Простейшая запаздывающая коррекция.
- •Запаздывающая коррекция с шунтированием последовательной rc-цепью.
- •Последовательной rc-цепью
- •Простейшая коррекция с фазовым опережением
- •Тема 2.4 Устройства аналоговой обработки сигналов
- •2.4.1 Инвертирующий сумматор
- •Входными сигналами
- •Неинвертирующий сумматор
- •Неинвертирующего усилителя.
- •Интегрирующий усилитель
- •Дифференцирующий усилитель
- •Инвертирующем усилителе.
- •Логарифмический усилитель
- •Антилогарифмический усилитель
- •2.4.7 Аналоговые перемножители и делители
- •Перемножители и делители на основе управляемых сопротивлений
- •Другие принципы построения перемножителей
- •Некоторые применения аналоговых перемножителей
- •Тема 2.5 Компараторы напряжения
- •2.5.1 Назначение, основные параметры, типы, принцип и действие компараторов
- •2.5.2 Двухпороговые детекторы
- •2.5.3 Особенности схемотехники компараторов
- •Тема 2.6особенности построения цап и ацп
- •2.6.1 Назначение, параметры цифроаналоговых преобразователей (цап)
- •2.6.2 Цап (цифроаналоговые преобразователи): применение, принцип действия
- •2.6.3 Схема четырёхразрядного цап на основе двоично-взвешенных резисторов
- •Двоично-взвешённых резисторов
- •2.6.4 Схема цап лестничного типа
- •МатрицеR-2r
- •2.6.5 Аналого-цифровые преобразователи(ацп)
- •2.6.6 Классификация ацп
- •2.6.7 Ацп последовательного приближения
- •Раздел 3. Основыимпульснойсхемотехники
- •Тема 3.1 Параметры испектры импульсных сигналов
- •3.1.1Импульсные устройства: достоинства и применение
- •3.1.2 Параметры импульсных сигналов
- •Спектральный состав импульсных сигналов
- •3.1.4 Частотный спектр радиоимпульсов
- •3.1.5 Структура импульсных сигналов
- •Тема 3.2 импульсные усилители и ключи
- •3.2.1 Некорректированный импульсный усилитель
- •3.2.2.2Эмиттерная коррекция фронта импульса
- •Импульсного усилителя с эмиттерной коррекцией фронта импульса
- •Коррекция плоской вершины импульса (нч-коррекция)
- •Импульсного усилителя с плоской вершины импульса.
- •Эмиттерный повторитель
- •3.2.3Транзисторные ключи
- •3.2.4Ключи на биполярных транзисторах
- •Разновидности ключей на биполярных транзисторах
- •Ключ с ускоряющим конденсатором
- •Ненасыщенный ключ с нелинейной отрицательной обратной связь
- •3.2.6Ключи на мдп-транзисторах
- •Индуцированными каналами разных типов проводимости на (комплементарных) кмдп-транзисторах.
- •Тема 3.3 формирователи импульсов
- •3.3.1 Дифференцирующие цепи
- •3.3.2 Влияние паразитных параметров на выходной импульс
- •3.3.3 Переходная rc-цепь
- •3.3.4 Интегрирующая rc-цепь
- •3.3.5 Диодные ограничители амплитуды
- •3.3.6 Последовательные диодные ограничители
- •(Ограничители с нулевым порогом ограничения)
- •(Ограничители с ненулевым порогом ограничения)
- •3.3.7 Параллельные диодные ограничители.
- •(Ограничитель с нулевым порогом ограничения)
- •(Ограничитель с ненулевым порогом ограничения)
- •3.3.8 Транзисторный усилитель-ограничитель
- •3.3.9.2 Генератор с контуром ударного возбуждения в цепи эмиттера.
- •3.3.10 Формирующие линии
- •3.3.10.1 Формирование прямоугольных импульсов длинной линией
- •Длинной линией
- •3.3.10.2 Цепочечные линии задержки.
- •3.3.11 Формирователь с линией задержки
- •Транзисторный ключ и линию задержки.
- •Тема 3.4 генераторы прямоугольных импульсов Общие сведения
- •3.4.1Транзисторные мультивибраторы
- •3.4.2 Мультивибратор с корректирующими диодами
- •3.4.3 Ждущий мультивибратор
- •3.4.4 Синхронизированный мультивибратор
- •3.4.5 Мультивибратор в режиме деления частоты
- •3.4.6 Мультивибраторы на сxемах операционных усилителей
- •3.4.6.1 Автоколебательные мультивибраторы на операционных усилителях
- •3.4.6.2 Ждущие мультивибраторы
- •3.4.7Транзисторные блокинг-генераторы
- •3.4.8.1 Автоколебательный блокинг-генератор.
- •3.4.8.2 Ждущий блокинг-генератор.
- •3.4.8.3 Синхронизированный блокинг-генератор.
- •Тема 3.5 генераторы пилообразных импульсов
- •3.5.1 Генераторы линейно-изменяющегося напряжения
- •3.5.1.1 Генераторы лин с токостабилизирующими элементами.
- •3.5.1.2 Глин компенсационного типа.
- •3.5.1.3 Глин с положительной обратной связью
- •3.5.1.4 Глин с отрицательной обратной связью
- •3.5.1.5 Генераторы линейно изменяющегося тока
- •Тема 3.6 триггеры Общие сведения
- •3.3.1 Симметричный триггер с внешним смещением
- •3.3.2 Симметричный триггер с автоматическим смещением
- •3.3.3 Несимметричный триггер с эмиттерной связью (триггер Шмитта)
- •3.3.4 Запуск транзисторных триггеров
- •3.3.4.1 Раздельный запуск
- •3.3.4.2 Счетный запуск
- •3.3.5 Быстродействие транзисторных триггеров
- •Литература
- •Содержание
3.2.6Ключи на мдп-транзисторах
От биполярных МДП-транзисторы выгодно отличаются весьма большим входным сопротивлением по постоянному току и меньшей площадью, особенно в ИМС.
Рис 3.17 Схемы ключей на МДП-транзисторах
Если
напряжение
между затвором (3) и истоком (И) менее
отрицательно, чем пороговое, транзистор
заперт и стоковое напряжение
близко к
.
Когда отрицательным управляющим
импульсом транзистор отпирается, рабочая
точка оказывается в крутой области
стоковых характеристик, где остаточное
напряжение
на транзисторе мало.
В
ИМС ключей роль резисторов
выполняют МДП-транзисторы. Это позволяет
уменьшить площадь, занимаемую ключом,
обеспечивает большую технологичность
микросхемы и улучшает ее параметры.
Транзистор VT1 является управляющим, а
VT2 – нагрузочным, он постоянно открыт.
Ключ нормально функционирует, если
сопротивление открытого транзистора
VT1 много меньше сопротивления отпертого
транзистора VT2, что обеспечивается при
изготовлении ключа.
Схема ключа на МДП-транзисторах с индуцированными каналами разных типов проводимости на (комплементарных) КМДП-транзисторах.
Рис 3.18 Схема ключа на МДП-транзисторах с
Индуцированными каналами разных типов проводимости на (комплементарных) кмдп-транзисторах.
Управляющее
напряжение
подается на объединенные затворы
.
Транзистор VT1
открыт, когда
транзистор VT2
отпирается, если
более отрицательно, чем отрицательное
пороговое напряжение
.
Когда
,
транзистор VT1
заперт, транзистор VT2
открыт , т.к
по абсолютному значению больше
. При
транзистор VT1
отпирается, транзистор VT2
закрывается, т.к. теперь
оказывается менее отрицательным, чем
.
Таким образом, VT2
– управляемая нагрузка.
В стационарных состояниях транзисторы VT1 и VT2 открыты попеременно, благодаря чему через них проходит очень малый ток. Поэтому потребляемая мощность мала.
Быстродействие ключей на КМПД-транзисторах на порядок выше, чем других ключей на полевых транзисторах, и ограничено в основном ёмкостями самих транзисторов.
Тема 3.3 формирователи импульсов
С помощью формирователей получают остроконечные и пилообразные импульсы, импульсы трапецеидальной формы. Свойства линейных цепей с частотно-зависимыми элементами используются для построения дифференцирующих и интегрирующих цепей, а свойства нелинейных цепей - при построении ограничителей амплитуды и различных формирователей импульсов.
3.3.1 Дифференцирующие цепи
Ток через конденсатор связан с приложенным к нему напряжением следующим соотношением:
Чтобы
воспользоваться результатом
дифференцирования, нужно создать
напряжение, пропорциональное току
.Это
имеет место в цепи, в которой выходное
напряжение снимается с резистора R:
,
где
– постоянная времени цепи.
Рисунок 3.19 Дифференцирующая цепь
Пусть
к цепи в момент
прикладывается напряжение
. Так как конденсатор С мгновенно
зарядиться не может, то скачок напряжения
выделяется на резисторе R. Благодаря
малой постоянной времени цепи, зарядка
конденсатора происходит сравнительно
быстро, а напряжение на выходе с той же
скоростью стремится к нулю. Установившееся
значение
- результат безошибочного дифференцирования
постоянного напряжения.
Чем меньше постоянная времени цепи, тем меньше запаздывание и тем меньше погрешность дифференцирования.
Рассмотрим
реакцию цепи на прямоугольный импульс.
Его длительность τи»τ.
Положительный скачок напряжения
выделяется на выходе, затем начинается
зарядка конденсатора и напряжение на
выходе становится практически равным
нулю задолго до окончания входного
импульса (
).
В
момент окончания входного импульса в
цепи будет действовать только напряжение
,
которое прикладывается к выходу. Поэтому
в момент
на
выходе цепи появляется напряжение
с отрицательной полярностью. Этот
отрицательный перепад быстро спадает
до нуля, так как конденсатор быстро
разряжается.
RC-цепь с постоянной времени τи»τ , называют дифференцирующей.
Наиболее часто такую цепь используют для дифференцирования прямоугольных импульсов, в результате которого получаются короткие остроконечные импульсы. Поэтому дифференцирующую цепь называют также укорачивающей и обостряющей.
Остроконечные импульсы используются широко, в частности для запуска импульсных устройств. Сохраняя, по существу, крутой фронт исходного прямоугольного импульса, остроконечными импульс спадает настолько быстро, что не влияет на последующую работу запускаемого устройства.
Чем
меньше постоянная времени цепи
,
тем быстрее заряжается и разряжается
конденсатор, и тем меньшую длительность
имеют выходные импульсы, тем более
остроконечными они являются.
Изменение
формы импульсов при дифференцировании
можно объяснить по-иному: для НЧ-гармоник,
составляющих плоскую вершину, сопротивление
конденсатора
оказывается
много больше сопротивления R.
Поэтому на выход плоская вершина почти
не передаётся.