
- •Раздел 1основы аналоговой схемотехники
- •Введение
- •Общие сведения об аналоговых
- •Электронных устройствах
- •Усилителя
- •Тема 1.2 Принцип электронного усиления
- •Тема 1.3 Классификация аэу
- •Тема 1.4 Стабильность показазателей аэу
- •Тема 1.1 Основные технические параметры и характеристики аэу
- •1.1.1Входное и выходное сопротивление. Коэффициенты
- •Усиления
- •1.2 Амплитудно-частотная характеристика (ачх) и фазочастотная характеристика(фчх)
- •Характеристика
- •1.1.2 Переходная, динамическая, амплитудная характеристики. Динамический диапазон
- •1.1.3 Нелинейные искажения(ни)
- •1.1.4 Коэффициент полезного действия
- •1.1.5 Собственные помехи
- •1.1.6 Стабильность показателей аэу
- •Тема 1.2 Методы обеспечения режима работы биполярных и полевых транзисторов в каскадах усиления
- •1.2.1 Схема с фиксированным током базы
- •1.2.2 Схема с фиксированным напряжением база – эмиттер
- •1.2.3 Схемы с температурной стабилизацией
- •1.2.4 Стабильность рабочей точки
- •1.2.5 Способы задания режима покоя в усилительных каскадах на полевых транзисторах
- •Переходом; б – со встроенным каналом; г – с индуцированным каналом
- •1.2.6 Обратные связи в усилителях
- •1.2.7 Последовательная обратная связь по напряжению
- •Усилителя с обратной и без обратной связи
- •1.2.8 Последовательная обратная связь по току
- •1.2.9. Режимы работы усилительных каскадов
- •1.2.10 Работа активных элементов с нагрузкой
- •Каскада с нагрузкой в режиме классаА
- •1.2.11 Усилительный каскад с общим эмиттером
- •Резисторного каскада в схеме с оэ
- •1.2.12 Усилительный каскад по схеме с общей базой
- •1.2.13 Усилительный каскад с общим коллектором (эмиттерный повторитель)
- •Тема 1.3Многокаскадные усилители
- •1.3.1 Особенности построения многокаскадных усилительных трактов
- •1.3.2 Способы межкаскадных связей Усилители с непосредственными межкаскадными связями.
- •Межкаскадными связями
- •Усилители с гальваническими межкаскадными связями.
- •Каскады и цепи с емкостной связью.
- •Трансформаторная межкаскадная связь.
- •1.3.3 Оптроны как элементы межкаскадных связей и гальванических развязок
- •1.3.4 Составные транзисторы. Каскодная схема.
- •Раздел 2 основы аналоговой микросхемотехники
- •Тема 2.1 Особенности элементов интегральной микросхемотехники
- •2.1.1 Генераторы стабильного тока (гст), генераторы малого стабильного напряжения (гмсн) и схемы сдвига уровня
- •Напряжения
- •Схемы сдвига уровня:
- •2.1.2 Каскад на двух транзисторах с эмиттерной связью
- •Эмиттерной связью
- •2.1.3 Работа каскада в качестве фазоинверсного
- •2.1.4 Работа каскада в качестве дифференциального
- •2.1.5 Токовое зеркало(тз). Типовые схемы тз
- •4.6 Типовые схемы тз
- •2.1.6 Усложнённые входные дифференциальные каскады(дк)
- •2.1.7 Входные каскады на транзисторах супер-бэта
- •Супер-бэта
- •2.1.8 Унч на интегральных микросхемах
- •2.1.9 Широкополосные интегральные усилители(шиу)
- •Усилителей
- •2.1.10 Оконечные каскады интегральных усилителей
- •Усилителей
- •Тема 2.2Интегральные операционныеусилители
- •2.2.1 Основные параметры и типы оу
- •2.2.2 Классификация операционных усилителей (оу). Устройство оу. Требования к оу.
- •2.2.3 Амплитудно-частотные, фазочастотные, амплитудные характеристики оу.
- •Инвертирующий усилитель
- •Неинвертирующий усилитель
- •Дифференциальный усилитель
- •Усилитель, построенный на одном операционном усилителе (оу)
- •Сдвиги нуля и их компенсация
- •Схемы ручной балансировки нуля
- •Усилители переменного напряжения на базе оу.
- •Тема 2.3 Устойчивость усилителей с обратной связью и способы ее обеспечения
- •Устойчивость работы усилителей с оос
- •Критерии устойчивости Найквиста и Боде. Запасы устойчивости.
- •Найквиста
- •Устойчивости Боде
- •Методы частотной коррекции интегральных усилителей Простейшая запаздывающая коррекция.
- •Запаздывающая коррекция с шунтированием последовательной rc-цепью.
- •Последовательной rc-цепью
- •Простейшая коррекция с фазовым опережением
- •Тема 2.4 Устройства аналоговой обработки сигналов
- •2.4.1 Инвертирующий сумматор
- •Входными сигналами
- •Неинвертирующий сумматор
- •Неинвертирующего усилителя.
- •Интегрирующий усилитель
- •Дифференцирующий усилитель
- •Инвертирующем усилителе.
- •Логарифмический усилитель
- •Антилогарифмический усилитель
- •2.4.7 Аналоговые перемножители и делители
- •Перемножители и делители на основе управляемых сопротивлений
- •Другие принципы построения перемножителей
- •Некоторые применения аналоговых перемножителей
- •Тема 2.5 Компараторы напряжения
- •2.5.1 Назначение, основные параметры, типы, принцип и действие компараторов
- •2.5.2 Двухпороговые детекторы
- •2.5.3 Особенности схемотехники компараторов
- •Тема 2.6особенности построения цап и ацп
- •2.6.1 Назначение, параметры цифроаналоговых преобразователей (цап)
- •2.6.2 Цап (цифроаналоговые преобразователи): применение, принцип действия
- •2.6.3 Схема четырёхразрядного цап на основе двоично-взвешенных резисторов
- •Двоично-взвешённых резисторов
- •2.6.4 Схема цап лестничного типа
- •МатрицеR-2r
- •2.6.5 Аналого-цифровые преобразователи(ацп)
- •2.6.6 Классификация ацп
- •2.6.7 Ацп последовательного приближения
- •Раздел 3. Основыимпульснойсхемотехники
- •Тема 3.1 Параметры испектры импульсных сигналов
- •3.1.1Импульсные устройства: достоинства и применение
- •3.1.2 Параметры импульсных сигналов
- •Спектральный состав импульсных сигналов
- •3.1.4 Частотный спектр радиоимпульсов
- •3.1.5 Структура импульсных сигналов
- •Тема 3.2 импульсные усилители и ключи
- •3.2.1 Некорректированный импульсный усилитель
- •3.2.2.2Эмиттерная коррекция фронта импульса
- •Импульсного усилителя с эмиттерной коррекцией фронта импульса
- •Коррекция плоской вершины импульса (нч-коррекция)
- •Импульсного усилителя с плоской вершины импульса.
- •Эмиттерный повторитель
- •3.2.3Транзисторные ключи
- •3.2.4Ключи на биполярных транзисторах
- •Разновидности ключей на биполярных транзисторах
- •Ключ с ускоряющим конденсатором
- •Ненасыщенный ключ с нелинейной отрицательной обратной связь
- •3.2.6Ключи на мдп-транзисторах
- •Индуцированными каналами разных типов проводимости на (комплементарных) кмдп-транзисторах.
- •Тема 3.3 формирователи импульсов
- •3.3.1 Дифференцирующие цепи
- •3.3.2 Влияние паразитных параметров на выходной импульс
- •3.3.3 Переходная rc-цепь
- •3.3.4 Интегрирующая rc-цепь
- •3.3.5 Диодные ограничители амплитуды
- •3.3.6 Последовательные диодные ограничители
- •(Ограничители с нулевым порогом ограничения)
- •(Ограничители с ненулевым порогом ограничения)
- •3.3.7 Параллельные диодные ограничители.
- •(Ограничитель с нулевым порогом ограничения)
- •(Ограничитель с ненулевым порогом ограничения)
- •3.3.8 Транзисторный усилитель-ограничитель
- •3.3.9.2 Генератор с контуром ударного возбуждения в цепи эмиттера.
- •3.3.10 Формирующие линии
- •3.3.10.1 Формирование прямоугольных импульсов длинной линией
- •Длинной линией
- •3.3.10.2 Цепочечные линии задержки.
- •3.3.11 Формирователь с линией задержки
- •Транзисторный ключ и линию задержки.
- •Тема 3.4 генераторы прямоугольных импульсов Общие сведения
- •3.4.1Транзисторные мультивибраторы
- •3.4.2 Мультивибратор с корректирующими диодами
- •3.4.3 Ждущий мультивибратор
- •3.4.4 Синхронизированный мультивибратор
- •3.4.5 Мультивибратор в режиме деления частоты
- •3.4.6 Мультивибраторы на сxемах операционных усилителей
- •3.4.6.1 Автоколебательные мультивибраторы на операционных усилителях
- •3.4.6.2 Ждущие мультивибраторы
- •3.4.7Транзисторные блокинг-генераторы
- •3.4.8.1 Автоколебательный блокинг-генератор.
- •3.4.8.2 Ждущий блокинг-генератор.
- •3.4.8.3 Синхронизированный блокинг-генератор.
- •Тема 3.5 генераторы пилообразных импульсов
- •3.5.1 Генераторы линейно-изменяющегося напряжения
- •3.5.1.1 Генераторы лин с токостабилизирующими элементами.
- •3.5.1.2 Глин компенсационного типа.
- •3.5.1.3 Глин с положительной обратной связью
- •3.5.1.4 Глин с отрицательной обратной связью
- •3.5.1.5 Генераторы линейно изменяющегося тока
- •Тема 3.6 триггеры Общие сведения
- •3.3.1 Симметричный триггер с внешним смещением
- •3.3.2 Симметричный триггер с автоматическим смещением
- •3.3.3 Несимметричный триггер с эмиттерной связью (триггер Шмитта)
- •3.3.4 Запуск транзисторных триггеров
- •3.3.4.1 Раздельный запуск
- •3.3.4.2 Счетный запуск
- •3.3.5 Быстродействие транзисторных триггеров
- •Литература
- •Содержание
3.2.2.2Эмиттерная коррекция фронта импульса
Рис 3.10 Принципиальная схема корректированного
Импульсного усилителя с эмиттерной коррекцией фронта импульса
Эмиттерная коррекция осуществляется за счёт ООС, которая начинает проявляться при формировании плоской вершины импульса. Под воздействием фронта входного импульса выходное напряжение импульса круто возрастает, но за счёт снижения усиления(влияние ООС) устанавливается на более низком уровне , следовательно длительность фронта за счёт снижения амплитуды снижается.
Действие
ООС обусловлено
.
Конденсатор
выбирают с небольшой ёмкостью, чтобы в
начале плоской вершины входного импульса
он был бы уже заряжен, что приводит к
снижению
Цепь Rэ-Сэ стабилизирует положение рабочей точки . Сэ и напряжение на нём за время формирования импульса не успевает изменится , поэтому на работу цепи конденсатор практически не влияет.
Недостаток: за счёт падения выходного напряжения снижается КПД.
Коррекция плоской вершины импульса (нч-коррекция)
Рисунок 3.11 Принципиальная схема корректированного
Импульсного усилителя с плоской вершины импульса.
На
вход каскада действует отрицательный
входной импульс. При этом ток
увеличивается на величину ∆Iк
и часть его замыкается через конденсатор
,
сообщая его верхней обкладке положительный
заряд. В результате, падения напряжения
на конденсаторе
и коллекторе транзистора становятся
менее отрицательными .
Действие
корректирующей цепи Скор-Rкор
можно объяснить по-другому. На низких
частотах, где сопротивление корректирующего
конденсатора
велико,
он не шунтирует коллекторную нагрузку
.
На средних и тем более верхних частотах
сопротивление конденсатора
мало, он шунтирует резистор
,
нагрузкой в цепи коллектора является
резистор Rк.
Таким образом, обеспечивается большее
усиление на низких частотах (составляющих
плоскую вершину импульса), что компенсирует
падение напряжения этих частот на
конденсаторе
.
Эмиттерный повторитель
Рисунок 3.12 Принципиальная схема эмиттерного повторителя
В эмиттерном повторителе нагрузка сосредоточена в цепи эмиттера. В каскаде действует 100% отрицательная обратная связь. Разница между входным и выходным напряжениями равна напряжению на открытом эмиттерном переходе, т. е. очень мала. Поэтому выходное напряжение по значению и фазе достаточно близко совпадает с входным напряжением, что и обусловило название каскада.
По переменному току коллектор транзистора через малое внутреннее сопротивление источника питания соединен с (“землёй”) => коллектор является общим выводом как для входной так и для выходной цепи. Поэтому эмиттерный повторитель иногда называют каскадом с общим коллектором.
Если на вход эмиттерного повторителя подать отрицательный импульс, то емкость нагрузки будет быстро заряжаться через малое выходное сопротивление каскада, так что передний фронт выходного импульса будет иметь небольшую длительность.
После прекращения воздействия входного импульса потенциал эмиттера, за счет заряженной емкости , может оказаться более отрицательным, чем база, и транзистор VT запрётся. В этом случае разрядка происходит через резистор Rэ. И длительность заднего фронта выходного импульса значительно больше, чем переднего. Даже если транзистор в рассмотренном случае полностью не запрётся, то за счет меньшего тока разрядка емкости будет более медленной, чем зарядка.
При
использовании транзистора типа n-p-n
длительность положительного фронта
оказывается меньше длительности
отрицательного. Чтобы оба фронта
выходного импульса имели одинаковую
длительность, применяют эмиттерный
повторитель на двух транзисторах.
Длительность фронта выходного импульса
тем меньше, чем больше
(частота, на которой коэффициент усиления,
равный произведению
уменьшается в
раз), меньше
,
меньше сопротивление генератора.