
- •Раздел 1основы аналоговой схемотехники
- •Введение
- •Общие сведения об аналоговых
- •Электронных устройствах
- •Усилителя
- •Тема 1.2 Принцип электронного усиления
- •Тема 1.3 Классификация аэу
- •Тема 1.4 Стабильность показазателей аэу
- •Тема 1.1 Основные технические параметры и характеристики аэу
- •1.1.1Входное и выходное сопротивление. Коэффициенты
- •Усиления
- •1.2 Амплитудно-частотная характеристика (ачх) и фазочастотная характеристика(фчх)
- •Характеристика
- •1.1.2 Переходная, динамическая, амплитудная характеристики. Динамический диапазон
- •1.1.3 Нелинейные искажения(ни)
- •1.1.4 Коэффициент полезного действия
- •1.1.5 Собственные помехи
- •1.1.6 Стабильность показателей аэу
- •Тема 1.2 Методы обеспечения режима работы биполярных и полевых транзисторов в каскадах усиления
- •1.2.1 Схема с фиксированным током базы
- •1.2.2 Схема с фиксированным напряжением база – эмиттер
- •1.2.3 Схемы с температурной стабилизацией
- •1.2.4 Стабильность рабочей точки
- •1.2.5 Способы задания режима покоя в усилительных каскадах на полевых транзисторах
- •Переходом; б – со встроенным каналом; г – с индуцированным каналом
- •1.2.6 Обратные связи в усилителях
- •1.2.7 Последовательная обратная связь по напряжению
- •Усилителя с обратной и без обратной связи
- •1.2.8 Последовательная обратная связь по току
- •1.2.9. Режимы работы усилительных каскадов
- •1.2.10 Работа активных элементов с нагрузкой
- •Каскада с нагрузкой в режиме классаА
- •1.2.11 Усилительный каскад с общим эмиттером
- •Резисторного каскада в схеме с оэ
- •1.2.12 Усилительный каскад по схеме с общей базой
- •1.2.13 Усилительный каскад с общим коллектором (эмиттерный повторитель)
- •Тема 1.3Многокаскадные усилители
- •1.3.1 Особенности построения многокаскадных усилительных трактов
- •1.3.2 Способы межкаскадных связей Усилители с непосредственными межкаскадными связями.
- •Межкаскадными связями
- •Усилители с гальваническими межкаскадными связями.
- •Каскады и цепи с емкостной связью.
- •Трансформаторная межкаскадная связь.
- •1.3.3 Оптроны как элементы межкаскадных связей и гальванических развязок
- •1.3.4 Составные транзисторы. Каскодная схема.
- •Раздел 2 основы аналоговой микросхемотехники
- •Тема 2.1 Особенности элементов интегральной микросхемотехники
- •2.1.1 Генераторы стабильного тока (гст), генераторы малого стабильного напряжения (гмсн) и схемы сдвига уровня
- •Напряжения
- •Схемы сдвига уровня:
- •2.1.2 Каскад на двух транзисторах с эмиттерной связью
- •Эмиттерной связью
- •2.1.3 Работа каскада в качестве фазоинверсного
- •2.1.4 Работа каскада в качестве дифференциального
- •2.1.5 Токовое зеркало(тз). Типовые схемы тз
- •4.6 Типовые схемы тз
- •2.1.6 Усложнённые входные дифференциальные каскады(дк)
- •2.1.7 Входные каскады на транзисторах супер-бэта
- •Супер-бэта
- •2.1.8 Унч на интегральных микросхемах
- •2.1.9 Широкополосные интегральные усилители(шиу)
- •Усилителей
- •2.1.10 Оконечные каскады интегральных усилителей
- •Усилителей
- •Тема 2.2Интегральные операционныеусилители
- •2.2.1 Основные параметры и типы оу
- •2.2.2 Классификация операционных усилителей (оу). Устройство оу. Требования к оу.
- •2.2.3 Амплитудно-частотные, фазочастотные, амплитудные характеристики оу.
- •Инвертирующий усилитель
- •Неинвертирующий усилитель
- •Дифференциальный усилитель
- •Усилитель, построенный на одном операционном усилителе (оу)
- •Сдвиги нуля и их компенсация
- •Схемы ручной балансировки нуля
- •Усилители переменного напряжения на базе оу.
- •Тема 2.3 Устойчивость усилителей с обратной связью и способы ее обеспечения
- •Устойчивость работы усилителей с оос
- •Критерии устойчивости Найквиста и Боде. Запасы устойчивости.
- •Найквиста
- •Устойчивости Боде
- •Методы частотной коррекции интегральных усилителей Простейшая запаздывающая коррекция.
- •Запаздывающая коррекция с шунтированием последовательной rc-цепью.
- •Последовательной rc-цепью
- •Простейшая коррекция с фазовым опережением
- •Тема 2.4 Устройства аналоговой обработки сигналов
- •2.4.1 Инвертирующий сумматор
- •Входными сигналами
- •Неинвертирующий сумматор
- •Неинвертирующего усилителя.
- •Интегрирующий усилитель
- •Дифференцирующий усилитель
- •Инвертирующем усилителе.
- •Логарифмический усилитель
- •Антилогарифмический усилитель
- •2.4.7 Аналоговые перемножители и делители
- •Перемножители и делители на основе управляемых сопротивлений
- •Другие принципы построения перемножителей
- •Некоторые применения аналоговых перемножителей
- •Тема 2.5 Компараторы напряжения
- •2.5.1 Назначение, основные параметры, типы, принцип и действие компараторов
- •2.5.2 Двухпороговые детекторы
- •2.5.3 Особенности схемотехники компараторов
- •Тема 2.6особенности построения цап и ацп
- •2.6.1 Назначение, параметры цифроаналоговых преобразователей (цап)
- •2.6.2 Цап (цифроаналоговые преобразователи): применение, принцип действия
- •2.6.3 Схема четырёхразрядного цап на основе двоично-взвешенных резисторов
- •Двоично-взвешённых резисторов
- •2.6.4 Схема цап лестничного типа
- •МатрицеR-2r
- •2.6.5 Аналого-цифровые преобразователи(ацп)
- •2.6.6 Классификация ацп
- •2.6.7 Ацп последовательного приближения
- •Раздел 3. Основыимпульснойсхемотехники
- •Тема 3.1 Параметры испектры импульсных сигналов
- •3.1.1Импульсные устройства: достоинства и применение
- •3.1.2 Параметры импульсных сигналов
- •Спектральный состав импульсных сигналов
- •3.1.4 Частотный спектр радиоимпульсов
- •3.1.5 Структура импульсных сигналов
- •Тема 3.2 импульсные усилители и ключи
- •3.2.1 Некорректированный импульсный усилитель
- •3.2.2.2Эмиттерная коррекция фронта импульса
- •Импульсного усилителя с эмиттерной коррекцией фронта импульса
- •Коррекция плоской вершины импульса (нч-коррекция)
- •Импульсного усилителя с плоской вершины импульса.
- •Эмиттерный повторитель
- •3.2.3Транзисторные ключи
- •3.2.4Ключи на биполярных транзисторах
- •Разновидности ключей на биполярных транзисторах
- •Ключ с ускоряющим конденсатором
- •Ненасыщенный ключ с нелинейной отрицательной обратной связь
- •3.2.6Ключи на мдп-транзисторах
- •Индуцированными каналами разных типов проводимости на (комплементарных) кмдп-транзисторах.
- •Тема 3.3 формирователи импульсов
- •3.3.1 Дифференцирующие цепи
- •3.3.2 Влияние паразитных параметров на выходной импульс
- •3.3.3 Переходная rc-цепь
- •3.3.4 Интегрирующая rc-цепь
- •3.3.5 Диодные ограничители амплитуды
- •3.3.6 Последовательные диодные ограничители
- •(Ограничители с нулевым порогом ограничения)
- •(Ограничители с ненулевым порогом ограничения)
- •3.3.7 Параллельные диодные ограничители.
- •(Ограничитель с нулевым порогом ограничения)
- •(Ограничитель с ненулевым порогом ограничения)
- •3.3.8 Транзисторный усилитель-ограничитель
- •3.3.9.2 Генератор с контуром ударного возбуждения в цепи эмиттера.
- •3.3.10 Формирующие линии
- •3.3.10.1 Формирование прямоугольных импульсов длинной линией
- •Длинной линией
- •3.3.10.2 Цепочечные линии задержки.
- •3.3.11 Формирователь с линией задержки
- •Транзисторный ключ и линию задержки.
- •Тема 3.4 генераторы прямоугольных импульсов Общие сведения
- •3.4.1Транзисторные мультивибраторы
- •3.4.2 Мультивибратор с корректирующими диодами
- •3.4.3 Ждущий мультивибратор
- •3.4.4 Синхронизированный мультивибратор
- •3.4.5 Мультивибратор в режиме деления частоты
- •3.4.6 Мультивибраторы на сxемах операционных усилителей
- •3.4.6.1 Автоколебательные мультивибраторы на операционных усилителях
- •3.4.6.2 Ждущие мультивибраторы
- •3.4.7Транзисторные блокинг-генераторы
- •3.4.8.1 Автоколебательный блокинг-генератор.
- •3.4.8.2 Ждущий блокинг-генератор.
- •3.4.8.3 Синхронизированный блокинг-генератор.
- •Тема 3.5 генераторы пилообразных импульсов
- •3.5.1 Генераторы линейно-изменяющегося напряжения
- •3.5.1.1 Генераторы лин с токостабилизирующими элементами.
- •3.5.1.2 Глин компенсационного типа.
- •3.5.1.3 Глин с положительной обратной связью
- •3.5.1.4 Глин с отрицательной обратной связью
- •3.5.1.5 Генераторы линейно изменяющегося тока
- •Тема 3.6 триггеры Общие сведения
- •3.3.1 Симметричный триггер с внешним смещением
- •3.3.2 Симметричный триггер с автоматическим смещением
- •3.3.3 Несимметричный триггер с эмиттерной связью (триггер Шмитта)
- •3.3.4 Запуск транзисторных триггеров
- •3.3.4.1 Раздельный запуск
- •3.3.4.2 Счетный запуск
- •3.3.5 Быстродействие транзисторных триггеров
- •Литература
- •Содержание
1.2.9. Режимы работы усилительных каскадов
В зависимости от значений постоянного тока и падения напряжения на транзисторе усилительного каскада и амплитуды входного усиливаемого сигнала различают основные режимы работы усилительного каскада: А, В, С, D, АВ.
Рисунок 1.19 Графическая иллюстрация работы усилительного каскада в режиме классаА
В режиме
классаАположение
рабочей точки выбирается таким образом,
чтобы при движении по линии нагрузки
она не заходила в нелинейную начальную
область коллекторных характеристик
и в область отсечки коллекторного тока.
На входной характеристике (рис. 1.19, а)
рабочая точка выбирается так, чтобы
входной сигнал полностью помещался на
линейном участке, а значение тока
покоя
располагалось
на середине этого линейного участка.
Амплитуды переменных составляющих
входного
и
выходного
токов,
появившихся вследствие входного сигнала
(рис. 1.19, б), в режимеАне
могут превышать токи покоя
и
соответственно.
Режим классаАхарактеризуется
работой транзистора на почти линейных
участках своих вольтамперных характеристик.
Это обуславливает минимальные нелинейные
искажения сигнала (
).
Режим классаАявляется
наименее экономичным в виду того, что
полезной является мощность, выделяемая
в выходной цепи за счет переменной
составляющей выходного тока.
Потребляемая мощность определяется
значительно большими величинами
постоянных составляющих
,
.
В связи с этим КПД усилительного каскада в режимеА невелик, всегда меньше 40%. Этот режим применяется в тех случаях, когда необходимы минимальные нелинейные искажения, а полезная мощность и КПД не являются решающими; это каскады предварительного усиления и маломощные выходные каскады.
Режим классаВ— это режим работы транзистора, при котором ток через него протекает в течение половины периода входного сигнала. Положение рабочей точки на ВАХ транзистора выбирается так, чтобы ток покоя был равен нулю (рис. 1.20).
Рисунок 1.20 Графическая иллюстрация работы усилительного каскада в режиме классаВ
В режиме
классаВтранзистор
открыт лишь в течение половины периода
входного сигнала. В этом случае выходной
ток имеет форму импульса с углом отсечки
.
Углом отсечки называют половину времени
периода входного сигнала, в течение
которой транзистор открыт и через
него протекает ток. Небольшая мощность,
потребляемая каскадом, позволяет
получить высокое КПД усилителя, в
пределах 60...70%. Режим классаВприменяется
в двухтактных каскадах, где прекращение
протекания тока в одном транзисторе
(первом плече) компенсируется появлением
тока в другом транзисторе (другом плече
каскада). Из-за нелинейности начальных
участков характеристик транзисторов
форма выходного тока (при малых его
значениях) существенно отличается
от формы тока, если бы имел место линейный
характер характеристик. В связи
с этим режим классаВ
характеризуется большими нелинейными
искажениями сигнала (
),
и этот режим используется преимущественно
в мощных двухтактных каскадах
усиления, однако в чистом виде его
применяют сравнительно редко. Чаще в
качестве рабочего режима используют
промежуточный режим АВ.
Режим класса
АВиспользуется
для уменьшения нелинейных искажений
усиливаемого сигнала, которые возникают
из-за нелинейных начальных участков
ВАХ транзисторов (рис. 1.21). При отсутствии
входного усиливаемого сигнала в режиме
покоя транзистор немного приоткрыт и
через него протекает ток, равный 5...
15% максимального тока при заданном
входном сигнале. Угол отсечки в режиме
класса АВнесколько
больше
и
достигает 120...130°.
Рисунок 1.21 Графическая иллюстрация работы усилительного каскада в режиме класса АВ
При работе
двухтактных каскадов в режиме АВпроисходит
перекрытие положительной и отрицательной
полуволн тока плеч двухтактного каскада,
что приводит к компенсации
искажений(
),полученных
за счет нелинейности начальных участков
ВАХ транзистора. КПД каскадов, работающих
в режиме АВ,
выше, чем каскадов в классеА,
но меньше, чем в классеВ,
за счет наличия малого входного тока
покоя
.
Режим классаС — это режим работы активного элемента (транзистора), при котором ток через него протекает в течение времени, меньшего половины периода входного сигнала (рис. 1.22). Угол отсечки меньше , а ток покоя равен нулю. Поскольку больше половины рабочего времени транзистор закрыт, мощность, потребляемая от источника питания, снижается, так что КПД каскадов повышается, приближаясь к 100%.
Рисунок 1.22 Графическая иллюстрация работы усилительного каскада в режиме классаС
С уменьшением угла отсечки в импульсе тока возрастают уровни высших гармоник по отношению к уровню первой. В связи с большими нелинейными искажениями режим классаС не используется в усилителях звукового диапазона частот, а используется в мощных двухтактных каскадах усилителей мощности радиочастот, нагруженных на резонансный контур и обеспечивающих в нагрузке токпервой гармоники.
Режим класса D— это режим, при котором транзистор находится только в двух состояниях: закрыт или открыт. В закрытом состоянии через транзистор протекает небольшой обратный ток, его электрическое сопротивление велико, падение напряжения на нем примерно равно напряжению источника питания. В открытом состоянии через транзистор протекает большой» ток, его электрическое сопротивление очень мало, мало и падение напряжения на нем. В связи с этим потери в транзисторе в режиме класса Dничтожно малы и КПД каскада приближается к 100%.
Таким образом, режим работы усилителя определяется заданием рабочей точки активного элемента в режиме покоя. В режиме классаАтранзистор работает без отсечки тока с минимальными нелинейными искажениями. В режимах АВ, В, С, D транзистор работает с отсечкой тока.