
- •Вопрос1 Кинематическое описание движения материальной точки
- •Вопрос2 Криволинейное движение
- •Вопрос3 Кинематика вращательного движения
- •Вопрос 4 Законы динамики Ньютона
- •Вопрос 5 Закон сохранения импульса
- •Вопрос 6 Работа, мощность.
- •Вопрос 7 Энергия
- •Вопрос 8 Момент инерции твердого тела
- •Вопрос 9 Работа и кинетическая энергия вращения
- •Вопрос 10 Основной закон динамики вращения
- •Вопрос 11 Закон сохранения момента импульса
- •Вопрос 12 Механические колебания
- •Вопрос 13 Идеальный газ
- •Вопрос 14 Распределение молекул идеального газа по скоростям хаотического теплового движения.
- •Вопрос 15 Распределение молекул в потенциальном поле сил
- •Вопрос 16 Первое начало термодинамики
- •Вопрос 17 Теплоемкость
- •Вопрос 18 Применение первого закона термодинамики к изопроцессам
- •Вопрос 19 Адиабатический процесс
- •2.3.6. Адиабатический процесс. Политропный процесс
- •Вопрос 20 Второе начало термодинамики
- •2.3.8. Энтропия, её статистическое толкование и связь с термодинамической вероятностью
- •2.3.9. Второе начало термодинамики
- •Вопрос 21 Цикл Карно для идеальной тепловой машины
- •Вопрос 22 Свойства физических зарядов
- •Вопрос 23 Напряженность электрического поля в вакууме
- •Вопрос 24 Теорема Остроградского-Гаусса для электрического поля в вакууме
- •2. Поле двух бесконечных параллельных равномерно заряженных плоскостей
- •Вопрос 25 Потенциал
- •Вопрос 26 Связь напряженности электрического поля с потенциалом
- •Вопрос 27 Проводники в электрическом поле
- •Вопрос 28 Диэлектрики в электрическом поле
- •Вопрос 29 Энергия электростатического поля
- •Вопрос 30 Постоянный электрический ток
- •Вопрос 31 Закон Ома для однородного участка цепи
- •Вопрос 32 Закон Ома для замкнутой цепи
- •Вопрос 33 Работа и мощность электрического тока
- •Вопрос 34 Магнитное поле в вакууме
- •Вопрос 36 Взаимодействие магнитного поля с током
- •Вопрос 38 Поток вектора магнитной индукции сквозь произвольную поверхность
- •Вопрос 40 Электромагнитная индукция
- •Вопрос 41 Явление самоиндукции
- •Вопрос 42 Энергия магнитного поля тока
- •Вопрос 43 Закон полного тока
- •Вопрос 44 Магнитные свойства вещества
- •Вопрос 45 Магнетики в магнитном поле
- •Вопрос 46 Ферромагнетизм
- •Вопрос 50 Интерференция света от двух источников
- •Вопрос 51 Интерференция света в тонких пленках
- •Вопрос 52 Дифракция света
- •Вопрос 53 Дифракция при параллельных лучах Фраунгорфера
- •Вопрос 54 Поляризация света
- •Вопрос 55 Способы получения поляризованного света
- •Вопрос 56 Тепловое излучение
- •Вопрос 57 Законы теплового излучения
- •Вопрос 58 Внешний фотоэффект
- •Вопрос 59 Эффект Комптона
- •Вопрос 60 Корпускулярно – волновой дуализм
- •Вопрос 61 Волновые свойства микрочастиц
- •Вопрос 62 Соотношение неопределенностей
- •Вопрос 63 Волновая функция.
- •Вопрос 64 Боровская теория водородоподобного атома
- •Вопрос 66 Молекула
- •Вопрос 67 Современные представления об электропроводности тел
- •Вопрос 68 Атомное ядро
Вопрос 26 Связь напряженности электрического поля с потенциалом
Напряженность как градиент потенциала. Эквипотенциальные поверхности
Работа по перемещению
положительного
единичного
точечного заряда из точки поля с проекцией
напряженности E
вдоль оси х
на расстояние dx
равна E
dx.
Та же работа равна
.
Приравняв оба выражения, можем
записать
E
=
|
(3.31) |
где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор Е:
E
=
=
–grad
φ,
где i, j, k — единичные векторы координатных осей х, у, z .
Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.
Для графического изображения распределения потенциала электростатического поля пользуются эквипотенциальными поверхностями — поверхностями, во всех точках которых потенциал имеет одно и то же значение.
Эквипотенциальные поверхности в данном случае — концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда — радиальные прямые. Линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.
Линии напряженности всегда нормальны к эквипотенциальным поверхностям, потому что все точки эквипотенциальной поверхности имеют одинаковый потенциал и работа по перемещению заряда вдоль этой поверхности равна нулю. Электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям.
Эквипотенциальные поверхности вокруг каждого заряда и каждой системы зарядов обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы.
П
о
расположению линий напряженности
электростатического поля можно построить
эквипотенциальные поверхности и,
наоборот, по известному расположению
эквипотенциальных поверхностей можно
определить в каждой точке поля модуль
и направление напряженности поля.
Вопрос 27 Проводники в электрическом поле
Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростатической индукцией.
Напряженность электростатического поля у поверхности проводника любой формы определяется поверхностной плотностью зарядов. Если проводнику сообщить некоторый заряд Q,, то нескомпенсированные заряды располагаются только на поверхности проводника, что соответствует минимуму потенциальной энергии. Так как заряды внутри проводника отсутствуют в состоянии равновесия, то создание внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Внутри полости поле будет отсутствовать, и она полностью изолирована от влияния внешних электростатических полей. Если этот проводник заземлить, то потенциал во всех точках полости будет нулевым. На этом принципе основана электростатическая защита — экранирование тел, например, измерительных приборов, от влияния внешних электростатических полей.
Величину
C = Q/ |
(3.51) |
называют электроемкостью уединённого проводника.
Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала. Единица электроемкости — фарад (Ф).
Емкость конденсатора - это физическая величина, равная отношению заряда Q,, накопленного в конденсаторе, к разности потенциалов ( ) между его обкладками:
C = Q/( ) |
Емкость плоского конденсатора:
C =
|