
- •Расчет эксплуатационных свойств автомобиля
- •Оглавление
- •2.1 Методические указания ……………………………………………. 23
- •5.1 Методические указания ………………………………………….…..45
- •13.1 Методические указания ………………………………...…………107
- •14.1 Методические указания……………….…………………………..112
- •Список обозначений
- •Введение
- •1.Внешне скоростные характеристики двигателей
- •1.1 Методические указания
- •1.2 Расчет внешней скоростной характеристики двигателя
- •1.3 Порядок выполнения лабораторной работы № 1 с примером расчета
- •1.3.4 По данным таблицы 1.1 построена внешняя скоростная характеристика двигателя, показанная на рисунке
- •Контрольные вопросы
- •2 Радиусы эластичного колеса и коэффициент учета вращающихся масс
- •2.1 Методические указания
- •2.1.1 Методика определения радиусов эластичного колеса
- •Физический смысл коэффициента учета вращающихся масс
- •2.2 Порядок выполнения лабораторной работы № 2 с примером расчета
- •2.2.1 Выбор исходных данных
- •2.2.2 Расчет максимального момента, передаваемого одним колесом на каждой передаче по формуле:
- •2.2.3 Расчет радиусов колеса
- •Анализ результатов расчета.
- •2.2.5 Расчет значений δвр для всех передач по теоретической формуле (2.2).
- •2.2.7 Анализ полученных результатов.
- •Контрольные вопросы
- •3 Режимы качения колеса
- •3.1 Методика расчета режимов качения колеса
- •3.2 Порядок выполнения лабораторной работы № 3 с примером расчета
- •3.2.2 Расчет режимов качения колеса
- •3.2.4 Анализ результатов расчета.
- •Контрольные вопросы
- •4 Графический метод решения уравнений силового и мощностного балансов
- •4.1 Содержание уравнений силового и мощностного балансов
- •4.2 Графический метод решения уравнений
- •4.3 Порядок выполнения лабораторной работы № 4 с примером расчета
- •4.3.1 Выбор исходных данных
- •4.3.2 Расчет графиков силового и мощностного балансов
- •4.3.4 С помощью полученных графических зависимостей необходимо определить:
- •Контрольные вопросы
- •5. Определение показателей приемистости автомобиля и динамическое преодоление препятствий
- •5.1. Методические указания
- •5.2 Метод расчета показателей приемистости
- •5.3 Динамическое преодоление дорожных сопротивлений
- •5.4 Порядок выполнения лабораторной работы № 5 с примером расчета
- •5.4.1 Выбор исходных данных
- •5.4.2 Расчет графика ускорений
- •5.4.3 Расчет разгонной характеристики
- •5.4.4. Динамическое преодоление подъема
- •Контрольные вопросы
- •6 Топливная экономичность
- •6.1 Методические указания
- •6.2 Методика расчета путевого расхода топлива
- •6.3 Порядок выполнения лабораторной работы № 6 с примером расчета
- •6.3.1 Выбор исходных данных
- •6.3.6 Анализ результатов расчета
- •Контрольные вопросы
- •7 Распределение тормозных сил
- •7.1 Методические указания
- •7.2 Определение тормозных сил при торможении
- •7.3 Порядок выполнения лабораторной работы № 7 с примером расчета
- •7.3.1 Исходные данные
- •7.3.3 Анализ результатов расчета
- •Контрольные вопросы
- •8. Влияние конструктивных и эксплуатационных параметров на показатели тормозной эффективности
- •8.1 Методические указания
- •8.2 Порядок выполнения лабораторной работы № 8 с примером расчета
- •8.2.1 Исходные данные
- •8.2.4 Расчет тормозной диаграммы
- •8.2.5. Анализ результатов расчета
- •9 Элементы проектировочного тягового расчета автомобиля
- •9.1 Методические указания
- •9.2 Подбор двигателя
- •9.3 Определение передаточного числа главной передачи
- •9.4 Выбор числа ступеней и расчет передаточных чисел коробки передач
- •9.5 Сравнение расчетных вариантов передаточных чисел трансмиссии
- •9.6 Порядок выполнения лабораторной работы № 9 с примером расчета и анализом полученных результатов
- •9.6.1 Выбор исходных данных
- •9.6.2 Подбор двигателя
- •9.6.3 Определение передаточного числа главной передачи
- •9.6.4 Выбор числа ступеней и расчет передаточных чисел коробки передач
- •9.6.5 Сравнение расчетных вариантов передаточных чисел трансмиссии
- •Контрольные вопросы
- •10 Расчет кругового поворота автомобиля
- •10.1 Методические указания
- •10.2 Расчет параметров кругового поворота автомобиля
- •10.3 Порядок выполнения лабораторной работы № 10 с примером расчета
- •10.3.1 Выбор исходных данных
- •10.3.2 Определение параметров увода шин с учетом рекомендаций нелинейной теории увода
- •10.3.3 Расчет параметров кругового поворота груженого автомобиля (в первом приближении)
- •10.3.4. Расчет параметров кругового поворота груженого автомобиля (второе приближение)
- •10.3.5 Построение характеристик статической траекторной управляемости (характеристики поворачиваемости) и анализ управляемости автомобиля
- •Контрольные вопросы
- •11 Устойчивость движения автомобиля
- •11.1 Методические указания
- •11.2 Расчёт показателей поперечной устойчивости
- •11.3 Расчёт критической скорости по курсовой устойчивости
- •11.4 Порядок выполнения лабораторной работы № 11 с примером расчета
- •11.4.1 Выбор исходных данных
- •11.4.2 Расчет показателей поперечной устойчивости автомобиля
- •11.4.3 Расчет критической скорости движения по курсовой устойчивости
- •11.4.4 Анализ полученных расчетных данных по поперечной и курсовой устойчивости автомобиля
- •Контрольные вопросы
- •12 Сравнительная оценка автомобилей по манёвренности
- •12.1 Методические указания
- •12.2 Порядок выполнения лабораторной работы № 12 с примером расчета
- •12.2.1 Исходные данные
- •12.2.2 Определение и
- •12.2.3 Определение параметров шин
- •12.2.4 Определение показателей поворота
- •12.2.5 Сравнительный анализ показателей маневренности
- •Контрольные вопросы
- •13 Оценка плавности хода автомобилей
- •13.1 Методические указания
- •13.2 Порядок выполнения лабораторной работы № 13
- •13.2.1 Исходные данные
- •13.2.5 Анализ полученных результатов расчета
- •Контрольные вопросы
- •14 Оценка проходимости автомобилей
- •14.1 Методические указания
- •14.2.1 Исходные данные
- •14.2.2 Расчёт зависимости наибольшего угла преодолеваемого подъёма от коэффициента сцепления
- •14.4.4 Анализ результатов расчета
- •Контрольные вопросы
- •Заключение
- •Рекомендуемая литература
- •Приложение
- •Расчет эксплуатационных свойств автомобиля
- •394000, Г. Воронеж, ул. К. Маркса, 43
Физический смысл коэффициента учета вращающихся масс
Коэффициент учета вращающихся масс δвр показывает, во сколько раз сила, необходимая для разгона с заданным ускорением j поступательно движущихся и вращающихся масс автомобиля, больше силы, необходимой для разгона только его поступательно движущихся масс.
Автомобиль не является сплошным телом. Кроме поступательно движущихся частей у него есть детали, которые участвуют в относительном вращательном движении. К ним относятся детали двигателя, трансмиссии, колеса. Поэтому кинетическая энергия автомобиля состоит из кинетической энергии поступательно движущихся масс и кинетической энергии деталей, участвующих в относительном (вращательном) движении
T=Tпост+Tотн
Обычно Тпост =ma v2/2,
где ma – масса автомобиля;
v – скорость движения автомобиля.
,
где IM – момент инерции маховика двигателя и деталей трансмиссии, связанных с ним (включая валы и шестерни): e – угловая скорости вала двигателя; ∑Ik – суммарный момент инерции колес; к – угловая скорость колес.
При разгоне энергия
двигателя тратится не только на
преодоление сил сопротивления
движению, но и на увеличение кинетической
энергии автомобиля (т.е. на увеличение
Тпост
и Тотн).
Это и учитывает коэффициент учета
вращающихся масс
.
Энергия двигателя реализуется в контакте колес с дорогой, поэтому суммарную силу инерции, действующую в контакте колеса и преодолеваемую двигателем, можно представить как
Ри =Pпост + Рврм + Рврк , (2.1)
где Рпост – сила инерции поступательно движущихся масс, приведенная к контакту колеса с дорогой; Рврм – сила инерции вращающихся деталей двигателя и трансмиссии, приведенная к контакту колеса с дорогой; Рврк – сила инерции колес, приведенная к контакту колеса с дорогой. Согласно законам физики
;
Рврм = Мм/rд, но Мм = Neŋт/ k, где MМ – момент двигателя, подведенный к колесам. В тоже время Nе = Iм ed e/dt и учитывая e= kuT
;
аналогично
.
Подставив значения в формулу (3.1) и поделив обе части полученного уравнения на Рпост, получим, согласно определению, коэффициент учета вращающихся масс
(2.2)
Iм из приложения в таблице 3, uтi =uкi uд uг –берутся из справочника.
=
0,8…0,92 меньше для многоосных грузовых
и автопоездов, больше для легковых.∑Ik
из приложения таблицы п.3, ma
- см. справочник , rk
, rд
– из расчетов
При выбеге Рврм = 0, поэтому
.
Т. е. выбег происходит только за счет запасенной кинетической энергии.
Если автомобиль загружен не полностью, то вместо значения mа в формулы подставляется значение mx.
Формулу для δвр можно записать в таком виде
δвр =1 + δ1в uk2+ δ2в (2.2а)
где δ1В=Iм
ur2
ŋт/(
)
; δ2в
=∑Ik/(
)
Если при расчете коэффициента учета вращавшихся масс значения Iм и Iк отсутствуют, то пользуются эмпирическими формулами, подученными на основе статистических расчетов, в частности для одиночного автомобиля при полной нагрузке:
(2.3)
т.е.
.
Если автомобиль загружен не полностью (mа=mх), то аналогично:
δ1вх=δ1в ma/mx
δ2вх=δ2в ma/mx,
т. е. δвр увеличивается, так как растет доля кинетической энергии вращающихся деталей.
Если автомобиль становится тягачом, то
δ 1в= 0,02 mт/ma;
δ2в = 0,03 mт zка/(mа zкт),
где mт – масса тягача ; ma – масса автопоезда: zка – число колёс автопоезда; zkт – число колес тягача.