- •Метод научного познания
- •Естественно научная картина мира
- •Естественнонаучная картина мира
- •3 Фундаментальные законы природы
- •4 Основополагающие принципы естествознания
- •2. Основополагающие принципы естествознания
- •5 6 Панорама классического , неклассического естествознания
- •7 Системный подход к описанию окружающего мира
- •8 Открытие системы и их свойства
- •9 Роль флуктуаций в поведении сложных систем
- •10 Синергитическая картина мира и универсальный эволюционизм
- •1. Синергетическая картина мира
- •2. Универсальный эволюционизм
- •11 Структура вселенной
- •12 Гипотеза большого взрыва
- •13 Самоорганизация и эволюция солнечной системы
- •14 Сравнительная характеристика планет солнечной системы
- •15 Самоорганизация и эволюция земли
- •1. Общая характеристика планеты
- •2. Физические оболочки Земли
- •16 Биосфера и геосфера
- •3. 4. 5 Самоорганизация и антропогенез
- •1. Природа человека
- •2. Современные представления о происхождении и эволюции человека
- •3. Эволюция головного мозга и развитие психики
- •Генетическая программа человека и природа интеллектуальных способностей
- •17 Самоорганизация и эволюция биологических систем
- •23 Самоорганизация и эволюция социальных систем
- •24 Основные признаки живого и структурные уровни его организации основные признаки живого
- •Уровни организации жизни
- •Молекулярный уровень организации жизни
- •Клеточный уровень организации жизни
- •Тканевый уровень организации жизни
- •Органный уровень организации жизни
- •Организменный (онтогенетический) уровень организации жизни
- •[Править]Популяционно-видовой уровень организации жизни
- •[Править]Биогеоценотический уровень организации жизни
- •[Править]Биосферный уровень организации жизни
- •25 Биологическая эволюция и концепция генетики
- •Введение
- •Законы Менделя
- •История Работы Грегора Менделя
- •Классическая генетика
- •Молекулярная генетика
- •Генетика в России и ссср
- •26 Современные глобальные проблемы человека
- •27 Роль моделирования в естествознании
- •28 Предпосылки научной революции в естествознании на рубеже 19-20 веков
- •29 Особенности развития естествознания в современных условиях
- •30 Законы ньютона и динамика поступательного движения
- •31 Динамика вращательного движения
- •32 Принцип инерции . Инерционная и гравитационная массы . Момент инерции
- •Формулировка
- •Осевой момент инерции
- •[Править]Теорема Гюйгенса — Штейнера
- •33 Развитие представлений о взаимодействии
- •34 Принципы дальнодействия и близкодействия
- •35 Эволюция представлений о пространстве и времени
- •36 Пространствено-временные отношения между объектами природы
- •37 Законы сохранения импульса , момент импульса и энергии
- •1. Импульс. Закон сохранения импульса.
- •Определение
- •38 Законы сохранения и превращения энергии в макроскопических процессах , способы передачи энергии от одного макроэкономического тела другому
- •39 Специальная теория относительности
- •Основные понятия
- •40 Микро мир , Макро мир , Мега мир
- •41 Структуры микромира и процессы в микромире
- •42 Химические системы и реакционная способность веществ
- •43 Особенности биологического уровня организации материи
- •44 Концепция квантовой механики
- •45 Корпускулярно-волновой дуализм
- •46 Принцип возрастания энтропии
- •47 Происхождение жизни (Эволюция и развитие живых систем ) Происхождение жизни (эволюция и развитие живых систем)
- •48 Биосфера и экология
13 Самоорганизация и эволюция солнечной системы
Все небесные тела Солнечной системы от Солнца до метеорных тел постепенно увеличивают свою массу посредством вычерпывания диффузной материи, ее аккреции на поверхность небесных тел и падений на небесные тела Солнечной системы других, более мелких небесных тел, как принадлежавших ранее ей, так и не принадлежавших. Увеличение массы небесных тел происходит не только во время галактических зим, но, хотя и незначительно, и в периоды между галактическими зимами. Поскольку все тела Солнечной системы постепенно увеличиваются и приближаются к Солнцу, то правилом, хотя и не без исключений, является то, что масса более близких к Солнцу небесных тел является большей, чем более удаленных. Эта закономерность более или менее четко прослеживается, начиная с Юпитера, первой планеты-гиганта от Солнца и, соответственно, самой крупной. Но поскольку между планетами-гигантами образуются со временем свободные сферические пространства (оболочки), то в них постепенно размещаются небесные тела малой массы: вблизи Солнца - астероиды, вдали - кометы, которые в своей совокупности образуют астероидное и кометные пояса, состоящие из тысяч и миллионов астероидов и комет.
Цель работы – самоорганизация и эволюция солнечной системы.
При конденсации диффузной материи на поверхность небесного тела во время галактической зимы вокруг него как бы возникает огромная атмосфера. Эта атмосфера резко отличается от обычной атмосферы небесного тела, существующей в периоды между галактическими зимами. Она имеет целый ряд особенностей, отличающих ее от обычной атмосферы. Во-первых, эта атмосфера является временным образованием, она существует только в период галактической зимы. После окончания очередной галактиче ской зимы возникшая атмосфера постепенно конденсируется или рассеивается. Поэтому ее можно называть зимней атмосферой. Однако следует иметь ввиду, что эта зимняя атмосфера существует на протяжении миллионов земных лет. И этой зимней атмосферой обзаводятся все небесные тела, в том числе, по-видимому, и небольшие. Во-вторых, зимняя атмосфера, в отличие от летней, которая существует и в настоящее время у крупных небесных тел Солнечной системы, является огромной, протяженной. Ее протяженность во много раз больше летней атмосферы.
Хотя часть Солнечной системы и погружается в единую солнечную атмосферу, но каждая из планет Солнечной системы также имеет свою протяженную планетную атмосферу. В-третьих, каждая из атмосфер небесных тел является необычайно разряженной, особенно на периферии. Ее плотность во много раз меньше плотности летней атмосферы, т.е. современной. В-четвертых, эта зимняя атмосфера, как и современная летняя, вращается вместе со своим небесным телом в том же направлении, но это вращение является дифференцированным, т.е. та часть зимней атмосферы, которая расположена ближе к поверхности небесного тела и ближе к плоскости его экватора, вращается несколько быстрее, чем те ее части, которые расположены дальше от поверхности и экваториальной области. И, в-пятых, зимняя атмосфера, ее наружная часть, является не сферической, а сильно сплюснутой
