Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Современный подход к производству мазей.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.02 Mб
Скачать

Глава 2. Вспомогательные вещества и их роль в производстве мазей

Вещества, увеличивающие вязкость.

Эта группа вспомогательных веществ используется для повышения вязкости мазей. К веществам, увеличивающим вязкость, относят продукты природного и синтетического происхождения. Чаще других применяют камеди, пектины, крахмал, агар-агар, натрия альгинат, аэросил, желатозу, производные целлюлозы, ПАВ, бентониты, алюминия стеарат и т.д. Применение веществ, увеличивающих вязкость, улучшает проведение технологических процессов и повышает товароведческие показатели мази.

В то же время эти вспомогательные вещества могут оказывать выраженное влияние на такие важные характеристики лекарственных форм, как скорость высвобождения действующих ингредиентов, скорость всасывания лекарственных веществ. Например, введение в основы аэросила и алюминия стеарата резко замедляет всасывание аминофеназина, в то время как введение бентонита существенно не изменяет скорость всасывания.

Консерванты.

Под консервантами понимают вещества, способные предотвратить разложение действующих ингредиентов в лекарствах, могущие произойти вследствие жизнедеятельности микробов и грибов. Основными требованиями, предъявляемые к консерванту в фармацевтической практике, являются соответствие эмпирическому фактору безопасности и антимикробная активность в течение периода хранения и применения лекарства. Классифицируют консерванты исходя из их химической природы. С этой точки зрения обычно выделяют три группы консервантов:

1. Неорганические соединения.

2. Металлоорганические соединения.

3. Органические соединения.

Неорганические соединения - соли тяжелых металлов, а также борная кислота, натрия тетраборат, перекись водорода и т.д.

Металлоорганические соединения - главным образом препараты ртути – мертиолат.

Органические соединения - различные спирты (этиловый, бензиловый и др.), фенолы (фенол и др.), кислоты (бензойная кислота и ее натриевая соль, сорбиновая кислота и ее производные), соли четвертичных аммониевых соединений (бензалкония хлорид, бензетония хлорид и др.)

Помимо физиологической опасности, применение консервантов связано с решением ряда биофармацевтических проблем, в частности с возможным изменением активности лекарственных веществ (особенно консервантов, являющихся соединениями четвертичного аммония). Поэтому применение консервантов требует большой осторожности и серьезного всестороннего исследования вопроса, включая его физиологические и биологические аспекты.

Глава 3. Технология мазей на фармацевтических предприятиях

Технологический процесс получения мазей на фармацевтических предприятиях может быть кратко представлен в виде следующей схемы:

Технологический процесс производства мазей на химико-фармацевтических предприятиях составляют следующие основные стадии:

  1. Санитарная обработка производства

  2. Подготовка сырья и материалов

  3. Введение лекарственного вещества в основу

  4. Гомогенизация мазей

  5. Стандартизация готового продукта

  6. Фасовка, маркировки и упаковка готового продукта

На каждой стадии производства проводится контроль качества продукции.

Стадия «Санитарная обработка производства» направлена на обеспечение выпуска высококачественного готового продукта, на предупреждение микробной контаминации в ходе производства, хранения и транспортировки, на создание безопасных условий труда и охраны здоровья работающих.

Подготовка основы включает в себя операции растворения или сплавления ее компонентов с последующим удалением механических примесей методом фильтрования.

Плавящиеся компоненты основы (вазелин, ланолин, воск и т.д. ) расплавляют в электрокотлах марок ЭК – 40, ЭК – 60, ЭК – 125, ЭК – 250 или в котлах с паровыми рубашками марок ПК – 125, ПК – 250. По форме они могут быть цилиндрическим или сферическими, а для слива растопленной массы их делают опрокидывающимися или со сливными кранами.

Мазевые котлы изготовляются из меди или чугуна и покрываются полудой или эмалью. Они включены в группу вспомогательного оборудования для производства.

Расплавление основы осуществляется специальной паровой «иглой» (электропанелью) или паровым змеевиком. На рисунке 1.1. представлена электропанель для плавления основ, которая состоит из емкости (1) и конической воронки (2) с решеткой, защитным кожухом и нагревательными элементами (3). Защитный кожух предохраняет проникновение основы к нагревательным элементам, а решетка защищает мазевый котел от попадания примесей. После расплавления основа по шлангу (4) с помощью вакуума перекачивается в котел.

Помимо плавления и транспортировки, устройство позволяет одновременно взвешивать основу на сотенных весах (5).

Рис. 1.1. Электропанель для плавления мазевых основ

Расплавленную основу по обогреваемому трубопроводу переводят в реактор для приготовления мази. Для перекачивания расплавленной основы используют различные типы насосов. Наиболее целесообразно использовать шестеренчатые насосы, так как они хорошо работают в вязких средах.

В стадию «Подготовка, лекарственных веществ» включается измельчение, просеивание, если лекарственные вещества входят в мазь по типу суспензии; растворение в воде или компоненте мазевой основы, если это мазь-эмульсия или мазь - раствор.

Стадия «Введение лекарственных веществ в основу» может включать добавление твердых веществ к основе (мазь-суспензия) или растворение веществ в основе (мазь-раствор). В случаях комбинированных мазей могут осуществляться и тот, и другой процессы.

Схема введения лекарственных веществ в основу, представленная ниже, поясняет выбор основы и технологии введения вещества.

 Для введения лекарственных веществ в основу используются мазевые котлы или реакторы. Они снабжаются мощными мешалками, приспособленными для работы в вязких средах (якорные, грабельные или планетарные).

Реактор (рис. 1.2) предназначен для смешивания густых компонентов с вязкостью до 200 Н·с/см2. Он имеет корпус (1), крышку (2) с вмонтированной в нее загрузочной воронкой, смотровое окно, клапаны, штуцера и патрубки для введения различных компонентов. Крышка корпуса с помощью траверсы (9) и гидравлических опор (10) может подниматься и опускаться. Внутри корпуса расположена якорная мешалка (3) с лопатками (4), соответствующими профилю корпуса. Мешалки (3) и (4) вращаются в противоположные стороны с помощью гидродвигателей (7) и соосных валов (6). Кроме этого, в корпусе реактора смонтирована и турбинная мешалка (5), вращающаяся с помощью электродвигателя (8). Наличие трех мешалок обеспечивает качественное перемешивание компонентов мази. Загрузка реактора осуществляется через паровой клапан (11), его корпус имеет «рубашку» для подвода горячей или холодной воды.

Рис. 1.2. Реактор - смеситель

Для смешивания основ и лекарственных веществ используют тестомесильные машины типа ТММ-1М, которые имеют сменный подкатывающийся котел и смешивающий рычаг с лопастями. Котел приводит во вращение электродвигатель.

Фирма «А. Джонсон и Ко» (Англия) выпускает универсальный смеситель «Юнитрон» (рис. 1.3). Он состоит из неподвижного резервуара (1), закрывающегося крышкой (2) с гидравлическим управлением. В крышке имеются впускные каналы и система для мойки резервуара без его вскрытия. В центре котла вмонтирован вал (3), приводящий в движение сменные смесительные насадки (4) и вращающийся скребок (5). В резервуаре имеется нижнее выпускное отверстие (6) и отверстие (7) для подключения гомогенизатора или другого оборудования. Смешивание компонентов в резервуаре можно производить при различных температурах, в среде инертного газа, с постоянным измерением температуры смеси, содержания в ней влаги, определения массы и других параметров.

Управление всеми операциями выполняется с пульта, на котором установлены записывающие устройства.

Рис. 1.3. Схема смесителя «Юнитрон»

Однако с помощью одних мешалок нельзя добиться необходимой дисперсности суспензионных мазей. Поэтому мази при их производстве подвергают гомогенизации. Для гомогенизации мазей используются несколько типов аппаратов.

Жерновая мельница имеет два жернова, верхний отлит вместе с загрузочной воронкой, неподвижен, нижний вращается в горизонтальном направлении. На поверхности жерновов имеются бороздки, более глубокие в центре, у краев исчезающие. Мазь гомогенизируется в просвете между жерновами и выдавливается к краям, где с помощью скребка собирается в приемник. Степень дисперсности частиц в мази определяется расстоянием между жерновами. Производительность мельницы 60-80 кг/ч.

Рис.1.4. Жерновая мельница

Дисковая мазетерка состоит из двух дисков, расположенных горизонтально, один под другим. Вращается нижний диск, верхний неподвижный скреплен с воронкой, в которую подается мазь. В воронке имеется мешалка или скребки, способствующие движению мази. На дисках имеются насечки, более глубокие в центре и сходящие на нет к краям. Мазь поступает в просвет между дисками в центр растирается и одновременно перемещается к краям, с которых снимается скребками в приемник. Степень размола регулируется расстоянием между дисками. Производительность дисковой мазетерки 50-60 кг мази в час.

Валковая мазетерка состоит из двух или трех параллельно и горизонтально расположенных вращающихся валов с гладкой поверхностью (рис. 1.5). Они могут быть изготовлены из фарфора, базальта или металла. Для создания оптимальной температуры мази, поступающей на валки , их изготавливают полыми, чтобы при необходимости во внутрь можно было подавать воду. При работе валки вращаются с разной скоростью – 38 об/мин, 16 об/мин и 6,5 об/мин (последний, кроме того, совершает колебательные движения). Дифференциацию скоростей вращения валков обеспечивают специальные шестерни.

Рис. 1.5. Схема работы трехвалковой мазетерки

Мазь помещают в бункер, из него она самотеком поступает на валки, зазор между которыми регулируется. С третьего валка мазь поступает по направляющему желобу (3) в приемник фасовочной машины. Различная скорость вращения валков обеспечивает переход мази с одного валка на другой. Измельчающее действие их складывается из трех моментов:

  • твердые частицы (комки) раздавливаются или дробятся в щелях между валками (1, 2);

  • размалывающее действие далее усиливается перетирающим действием валков (2, 3), вследствие большей их скорости вращения;

  • растирающее действие усиливается дополнительными колебательными движениями третьего валка вдоль своей оси и соответствующим зазором между валками.

Валковые мазетерки имеют предохранительное устройство, автоматически останавливающее их работу при попадании посторонних предметов в зазоры между валками. Производительность их – около 50 кг мази в час.

Существенно интенсифицировать процессы, протекающие при изготовлении таких дисперсных систем, как эмульсионные, суспензионные и комбинированные мази, можно путем применения РПА.

При приготовлении мазей, содержащих аморфные вещества (сера, окись цинка, крахмал и др.), с помощью РПА возможно исключение стадии предварительного измельчения лекарственных веществ. Производство мазей, содержащих лекарственные вещества с прочной кристаллической решеткой (борная кислота, стрептоцид) предусматривает предварительное тонкое измельчение препаратов перед применением РПА.

В любом случае его применение позволяет экономить время, электроэнергию и снижать количество вспомогательных веществ по сравнению с традиционными методами приготовления мазей.

Технологический процесс приготовления мазей может быть периодическим и непрерывным. Периодический процесс может быть многоступенчатым и зависит от числа аппаратов, в которых последовательно проводят отдельные стадии.

Линия для производства стерильных мазей.

Линия состоит из плавильного котла (смесителя), гомогенизатора и стерилизатора. Плавильный котел (смеситель) многослойный, с ТЭНами или паровой рубашкой, с многолопастной мешалкой, с фторопластовыми скребками, крышка котла подъёмная, сдвигающаяся с люком на эксцентрике, мешалка и скребки быстросъемные, выгрузка снизу, с преобразователем частоты вращения обеспечивающем скорость вращения от 10 до 200 об/мин, пульт управления. Зачистка швов по GMP. Стерилизатор для приготовления готовой мази многослойный, с термоизоляцией, с рубашкой нагрева паром или ТЭНами, с многолопастной мешалкой, с фторопластовыми скребками, крышка котла с сальниковым уплотнением, скребки быстросъемные, с механизмом подъема, выгрузка снизу, с преобразователем частоты вращения обеспечивающем скорость вращения от 10 до 200 об/мин, манометр, термометр, термопара, штуцера №1,2 со стеклом, штуцера для сброса давления, аварийный штуцер для сброса давления, штуцер с фильтром, для воздуха, для подачи воды, пульт управления. Зачистка швов по GMP, а также фильтр, гомогенизатор, насос НСУ.

Принцип работы: в плавильный котел загружаются (через крышку) компоненты для приготовления мазевой основы. В нем масса нагревается и тщательно перемешивается. Готовая смесь гомогенизируется и через фильтр, который задерживает все механические включения и другие включения, поступает в стерилизатор. В этом аппарате под давлением, при заданной температуре и постоянном перемешивании в течение определенного количества времени происходит стерилизация мази. Готовая масса насосом перекачивается в тубонаполнительную машину

Рис.6 Линия для производства стерильных мазей

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]