
- •1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
- •1. Дискретное представление информации: двоичные числа; двоичное кодирование текста в памяти компьютера. Информационный объем текста.
- •Основные компоненты компьютера, их функциональное назначение и принципы работы. Программный принцип работы компьютера.
- •1. Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебного исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.
- •Исполнитель алгоритмов
- •Свойства алгоритма
- •В какой форме записываются алгоритмы?
- •Графический способ записи алгоритмов (блок-схема)
- •1. Процесс передачи информации, источник и приемник информации, канал передачи информации. Скорость передачи информации.
- •1. Логические величины, операции, выражения. Логические выражения в качестве условий в ветвящихся и циклических алгоритмах.
- •Текстовый редактор. Назначение и основные функции.
- •Долговременная память.
- •Билет №13
- •Билет №15.
- •Билет №16.
- •Билет №17.
- •Билет №18.
- •Билет №19.
- •Билет №20.
Билет №18.
Процессор: частота, разрядность и адресное пространство.
Процессор - это центральное устройство компьютера. Он выполняет находящиеся в оперативной памяти команды программы и "общается" с внешними устройствами благодаря шинам адреса, данных и управления, выведенными на специальные контакты корпуса микросхемы.
К обязательным компонентам процессора относятся арифметико-логическое (исполнительное) устройство (АЛУ) и устройство управления (УУ). Выполнение процессором команды предусматривает: арифметические действия, логические операции, передачу управления (условную и безусловную), перемещение данных из одного места памяти в другое и координацию взаимодействия различных устройств ЭВМ. Выделяют четыре этапа обработки команды процессором: выборка, декодирование, выполнение и запись результата. В ряде случаев, пока первая команда выполняется, вторая может декодироваться, а третья выбираться.
Функции процессора:
1.обработка данных по заданной программе путем выполнения арифметических и логических операций;
2.программное управление работой устройств компьютера.
Архитектура процессора
Процессор состоит из ячеек. В ячейках процессора данные не хранятся, а обрабатываются. Во время обработки они могут изменяться самыми разными способами. Ячейки процессора называются регистрами.
Регистр выполняет функцию кратковременного хранения числа или команды. Над содержимым некоторых регистров специальные электронные схемы могут выполнять некоторые манипуляции. Например, "вырезать" отдельные части команды для последующего их использования или выполнять определенные арифметические операции над числами. Основным элементом регистра является электронная схема, называемая триггером, которая способна хранить одну двоичную цифру (разряд).
Существует много разнообразных процессоров, и у каждой модели свои регистры. У одних процессоров регистров больше, у других - меньше. Бывают регистры восьмиразрядные – в такой регистр помещаются 8 битов, то есть один байт. Если регистр шестнадцатиразрядный, то в нем могут поместиться два байта. Пару взаимосвязанных байтов называют словом. В 32-разрядный регистр помещаются 4 байта (двойное слово).
Разные регистры процессора имеют разное назначение. Регистры общего назначения используются для операций с данными (байтами, словами и двойными словами). Адресные регистры служат для хранения в них адресов, по которым процессор находит данные в памяти.
Существуют специальные регистры для самопроверок процессора. Интересен флаговый регистр. Его биты служат как бы флажками, которые включаются или выключаются в особых случаях. Когда от меньшего числа отнимают большее, то занимают одну единичку в старшем разряде. На этот случай во флатовом регистре есть специальный флажок, который включается при таком событии. Есть там флажки, которые включаются при переполнении регистров или при их обнулении, а также еще несколько специальных флажков.
У каждого типа процессоров свой состав регистров, и у каждого и регистра свое назначение. Состав регистров процессора и их назначение называются архитектурой процессора. Чем сложнее процессор, тем сложнее его архитектура. В процессорах современных компьютеров несколько десятков регистров. Регистр представляет собой совокупность триггеров, связанных друг с другом определённым образом общей системой управления. Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например:
сумматор — регистр АЛУ, участвующий в выполнении каждой операции (принцип его работы рассмотрен в разделе 5.8);
счетчик команд — регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти; регистр команд — регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения. Часть его разрядов используется для хранения кода операции, остальные — для хранения кодов адресов операндов.
Система команд процессора
Мы продемонстрировали действие лишь трех команд (инструкций) процессора, а на самом деле подобных команд порядка тысячи. У каждой команды есть спой код (номер). Например есть команда 000, есть команда 001, 002 и т. д. Для каждого процессора существует специальный документ, в котором описано, какая инструкция что выполняет, каким кодом она записывается и как ее следует использовать, - этот документ называется системой команд процессора. У каждого процессора своя система команд. У одного процессора, например, команда 079 может обозначать: “К. числу, которое находится в регистре А, прибавить число, которое находится в регистре В, и результат оставить в регистре А”.
Другой процессор, может быть, вообще не имеет регистров А и В и называются они по-другому, и команда 079 выполняет с другое действие. В этом случае говорят о том, что эти процессоры имеют разные системы команд
У компьютеров четвертого поколения функции центрального: процессора выполняет микропроцессор (МП) - сверхбольшая интегральная схема (СБИС), реализованная в едином полупроводниковом кристалле (кремния или германия) площадью меньше 0,1 см.кв. Степень интеграции определяется размером кристалла и количеством реализованных в нем транзисторов. Так, центральный процессор содержит 1,2 млн. транзисторов, а Pentium - 5,5 млн. транзисторов.
Знание модели МП, установленного на системной плате компьютера, позволяет судить, к какому классу оборудования прилежит компьютер. Микропроцессоры различаются рядом важных характеристик:
тактовой частотой обработки информации;
разрядностью;
интерфейсом с системной шиной;
адресным пространством (адресацией памяти)
Тактовая частота обработки информации. Тактом называют интервал времени менаду началом подачи двух последовательных импульсов электрического тока, синхронизирующих работу, различных устройств компьютера. Специальные импульсы для отсчета времени для всех электронных устройств вырабатывает тактовый генератор частоты, расположенный на СИСТЕМНОЙ плате Его главный элемент представляет собой кристалл кварца, обладающий стабильностью резонансной частоты. Тактовая частота определяется как количество тактов в секунду и измеряется в мегагерцах (1МГц = 1 млн тактов/с). Тактовая частота влияет на скорость работы, быстродействие МП. Переход к микропроцессору с большей тактовой частотой означает повышение скорое обработки информации. Говоря о быстродействии процессор имеют в виду количество операций, выполняемых им в секунду
Один из способов повышения быстродействия МП -- использование кэш-памяти. Это позволяет избежать циклов ожидания в работе МП, пока информация из соответствующих схем памяти установится на системной шине данных компьютера. Таким образом кэш-память функционально предназначена для согласования скорости-работы сравнительно медленных устройств с относительно быстрым МП. Благодаря преимуществам в архитектуре процессоры с меньшей тактовой частотой могут иметь большее быстродействие.
Для определения производительности МП в настоящее время рассматривают четыре аспекта – целочисленные вычисления, вычисления с плавающей запятой, графика, видео, сравнивая их с производительностью процессора i486 SX-25 МГц, чьи показатели в 1992 г. были приняты за 100. Подчеркнем, что речь идет о производительности лишь самих процессоров, а не всей компьютерной системы в целом, которая зависит, помимо центрального процессора, от множества других факторов.
Для улучшения показателей при выполнении операций с плавающей запятой, на которые даже самые мощные универсальные микропроцессоры тратят достаточно много времени, создано и пользуется специальное устройство – математический сопроцессор. Это интегральная схема, работающая во взаимодействии центральным МП. Она предназначена только для выполнения математических операций. В них нет нужды, если работа на компьютере выполняется с базами данных или с обычными текстовыми редакторами, но если работают с электронными таблицами, с трехмерной графикой, издательскими пакетами, пакетами САПР, специальными программами по математическому моделированию, то отсутствие математического сопроцессора нежелательно. Поэтому все МП фирмы, начиная с i486, имеют встроенные сопроцессоры, что заметно повышает их производительность.
Разрядность процессора. Это число одновременно обрабатываемых процессором битов, то есть количество внутренних битовых (двоичных) разрядов -- важнейший фактор производительности МП. Процессор может быть 8-,16-, 32- и 64-разрядным. Вместе с быстродействием разрядность характеризует объем информации, перерабатываемый процессором компьютера за единицу времени.
Интерфейс с системной шиной. Разрядность внутренней шины данных ПМ может не совпадать с количеством внешних выводов для линии данных. Например, МП с 32-разрядной внутренней шиной данных может иметь только 16 внешних линий данных. Это означает, что разрядность интерфейса с внешней шиной данных равна 16. Аналогичная ситуация может наблюдаться с другой частью системной шины -- адресной шиной. Как уже отмечалось выполнение процессором команды предусматривает наряду с арифметическими действиями и логическими операциями передачу управления и перемещение данных из одного места памяти в другое. Поэтому важна не только разрядность внутренних шин процессора, но и его интерфейс с системной шиной.
Адресное пространство (адресация памяти). Одна из функций процессора состоит в перемещении данных, в организации их обмена с внешними устройствами и оперативной памятью. При этом процессор формирует код устройства а, а для ОЗУ – адрес ячейки памяти. Код адреса передается по адресной шине. Объем физически адресуемой микропроцессором оперативной памяти называется его адресным пространством. Он определяется разрядностью внешней шины адреса. Действительно, пусть разрядность адресной шины, тогда количество различных двоичных чисел, которые можно по ней передать, равно 2N. Известно, что число, передаваемое по адресной шине при обращении процессора к оперативной памяти, есть адрес ячейки ОЗУ (ее порядковый номер). Значит, 2N -- это количество ячеек оперативной памяти которым, используя адресную шину, может обратиться (адресоваться) процессор, то есть 2N -- объем адресного пространства процессора. Следовательно, при 16-, 20-, 24- или 32-разрядной шине адреса создается адресное пространство соответственно 216 = 64Кбайта, 220= 1 Мбайт, 224 = 16 Мбайт, 232 = 4 Гбайта. Поэтому разрядность процессора часто уточняют, записывая, например для i80386 -- 32/32, что означает: МП имеет 32-разрядную шину данных и 32-разрядную шину адреса, то есть одновременно обрабатывает 32 бита информации, а объем адресного пространства микропроцессора составляет 232 = 4 Гбайта.
Техника безопасности и факторы, оказывающие вредное воздействие на здоровье со стороны элементов комплекса ИВТ.