
- •Тема 1.1. Метрология - наука об измерениях
- •Раздел 1. Основы метрологии
- •Тема 1.1. Метрология - наука об измерениях
- •1.1.1. Предмет метрологии
- •1.1.2. Краткий очерк истории развития метрологии
- •1.1.3. Измерение, объект измерения
- •1.1.4. Единица измерения. Основное уравнение измерения
- •1.1.5. Шкалы измерений
- •1.1.6. Размерность. Основные, производные, дополнительные и внесистемные единицы физических величин.
- •Тема 1.2. Основные понятия об измерениях и средствах измерений
- •Тема 1.2. Основные понятия об измерениях и средствах измерений
- •1.2.1. Классификация измерений
- •1.2.2. Методы измерений
- •1.2.3. Общие сведения о средствах измерений
- •1.2.4. Основные характеристики средств измерений
- •Тема 1.3. Погрешности измерений и средств измерений
- •Тема 1.4. Принципы описания и оценивания погрешностей
- •Тема 1.3. Погрешности измерений и средств измерений
- •1.3.1. Виды погрешностей
- •1.3.2. Классы точности средств измерений. Нормирование погрешностей средств измерений
- •Тема 1.4. Принципы описания и оценивания погрешностей
- •1.4.1. Модели погрешности
- •1.4.2. Случайные погрешности. Вероятностное описание результатов и погрешностей
- •1.4.3. Оценка результата измерения
- •1.4.4. Варианты оценки случайных погрешностей
- •Тема 1.5. Государственная система обеспечения единства измерений (гси)
- •Тема 1.5. Государственная система обеспечения единства измерений (гси)
- •1.5.1. Понятие о единстве измерений
- •1.5.2. Эталоны единиц физических величин
- •1.5.3. Стандартные образцы
- •1.5.4. Поверочные схемы
- •1.5.5. Поверка и калибровка средств измерений
- •1.5.6. Методы передачи размера единицы величины
- •Тема 2.1. Измерительные преобразователи
- •Тема 3.1. Измерительные преобразователи
- •2.1.1. Основные характеристики измерительных преобразователей
- •2.1.2. Классификация измерительных преобразователей
- •2.1.3. Пассивные и активные масштабные преобразователи
1.5.6. Методы передачи размера единицы величины
К допускаемым методам поверки (калибровки) средств измерений относятся следующие.
1. Метод непосредственного сличения поверяемого или калибруемого средства измерения с эталоном соответствующего разряда, без использования компаратора (прибора сравнения).
Этот метод широко применяется при поверке различных средств измерений, например, в области электрических и магнитных измерений при определении метрологических характеристик измерительных приборов, предназначенных для измерения тока, напряжения, частоты.
Основой метода является проведение одновременных измерений одного и того же значения величины поверяемым или калибруемым и эталонным средствами измерений.
К достоинствам метода непосредственных сличений относятся простота, наглядность, возможность применения автоматической поверки (калибровки), отсутствие необходимости применения сложного оборудования.
2. Метод прямых измерений применяется в случае, когда имеется возможность с помощью многозначной эталонной меры, воспроизводящей в некотором диапазоне значения величины (в единицах которой проградуировано поверяемое или калибруемое средство измерения) произвести сличение и определить погрешность испытуемого средства измерения в пределах измерений.
Метод прямых измерений часто используется при поверке или калибровке мер электрических и магнитных величин.
Существуют и другие методы поверки, однако они используются реже указанных.
Тема 2.1. Измерительные преобразователи
2.1.1. Основные характеристики измерительных преобразователей
2.1.2. Классификация измерительных преобразователей
2.1.3. Пассивные и активные масштабные преобразователи
Тема 3.1. Измерительные преобразователи
2.1.1. Основные характеристики измерительных преобразователей
Внедрение механизации и комплексной автоматизации в производство требует быстрого и точного контроля технологических процессов, что связано с измерением и контролем разнообразных параметров физических величин.
Развитие измерительной техники показало, что среди многочисленных методов измерения неэлектрических величин наибольшими преимуществами обладают электрические методы, которые обеспечивают:
- возможность измерения сигналов очень малой величины (применение электронных усилителей дает возможность измерять такие сигналы, которые не могут быть измерены никакими другими способами);
- возможность передачи измеренной величины на расстояние, а следовательно, и возможность дистанционного управления различными процессами;
- высокую точность и скорость измерений;
- возможность комплектования измерительных и управляемых ими автоматических установок унифицированными электроизмерительными приборами.
Для измерения любой неэлектрической величины Х (температуры, давления, расхода жидкости, скорости, перемещения, ускорения, деформации, вибрации и т.д.) её преобразовывают с помощью первичного измерительного преобразователя или датчика в выходную электрическую величину Y.
Далее сигнал Y преобразуется цепью измерительных преобразователей прибора, где он претерпевает ряд изменений по уровню и спектру и преобразуется из одного вида энергии в другой.
Таким образом, прибор для измерения неэлектрических величин в общем можно представить в виде цепи измерительных преобразователей, последовательно преобразующих измеряемую величину X в ряд других величин и в конечном итоге - в число (код), определяющее значение измеряемой величины в определенных единицах измерения.
Измерительный преобразователь - техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации или передачи.
Это преобразование должно выполняться с заданной точностью и обеспечивать требуемую функциональную зависимость между входной и выходной величинами преобразователя.
Учитывая, что объект измерения, как правило, сложный процесс, характеризующийся множеством различных параметров, то информативным параметром входного сигнала будем считать непосредственно измеряемую величину или величину, функционально связанную с измеряемой величиной.
Неинформативный параметр не связан функционально с измеряемой величиной, но влияет на метрологические характеристики преобразователя.
Параметры, характеризующие условия, в которых работает преобразователь, и влияющие на его функцию преобразования, называют влияющими величинами.
Зависимость изменения метрологических характеристик преобразователя от изменения влияющей величины или неинформативного параметра входного сигнала в пределах рабочих условий эксплуатации называется функцией влияния.
Функция влияния может быть нормирована в виде формулы, графика или таблицы.
Основные характеристики измерительного преобразователя - это
- функция преобразования,
- чувствительность,
- погрешность.
Различают номинальную функцию преобразования Yном = fном(X), приписываемую измерительному преобразователю согласно государственным стандартам, техническим условиям и другим нормативным документам, и реальную (рабочую) Yр = fр(X), которую он имеет в действительности.
Абсолютные, относительные и приведённые погрешности измерительного преобразователя определяются по входу и выходу, так как входная и выходная величины могут иметь разную физическую природу, а также вследствие того, что часто отсутствует измерительный преобразователь, по которому можно было бы поверить рабочий преобразователь.