
- •Первое начало термодинамики. Понятие внутренней энергии и работы. Энтальпия – как функция состояния системы. Изохорные и изобарные тепловые эффекты и соотношение между ними.
- •Зависимость теплового эффекта реакции от температуры. Уравнение Кирхгоффа.
- •Расчет изменения энтропии в изометрических процессах и при изменении температуры
- •Характеристические функции. Уравнение Гиббса-Гельмгольца. Химический потенциал.
- •Химическое равновесие. Вывод закона действующих масс для гомогенного химического равновесия. Константа химического равновесия и способы ее выражения.
- •Закон действующих масс для гетерогенного равновесия. Химический потенциал
- •17)Фазовые превращения и равновесия. Понятия фазы, компонента, степени свободы. Основные условия гетерогенного равновесия. Правило фаз Гиббса.
- •18)Фазовые переходы в однокомпонентных системах. Ур-е Клапейрона-Клаузиуса и его применение к процессам испарения, сублимации и плавления.
- •19)Фазовые диаграммы однокомпонентных систем /воды/
- •Диаграмма плавления двухкомпонентной системы с простой эвтектикой. Значение площадей, линий на диаграмме. Число степеней свободы, число и характкр фаз системы в характерных точках диаграммы.
- •21) Диаграмма состояния (плавления) системы, компоненты которой образуют устойчивое химическое соединение.
- •22)Диаграммы плавления бинарных систем. Понятие о физико-химическом анализе /с.Н. Курнаков/. Термический анализ. Принципы непрерывности и соответствия.
- •26.Диаграммы состояния двухкомпонентной системы с неограниченной растворимостью компонентов в твёрдом и жидком состояниях.
- •39. Клас-цияэлектродов.Электроды первого рода
- •Реакция нулевого порядка
- •]Реакция первого порядка
- •Реакция второго порядка
- •50. Кинетика последовательных реакций
- •51.Фотохимические реакции. Закон фотохимической эквивалентности Эйнштейна. Квантовый выход реакции.
- •52. Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции. Правило Вант-Гоффа. Ускоренные методы определения срока годности лв.
- •53. Теория активных соударений. Энергия активации. Уравнение Аррениуса. Связь между скоростью реакции и энергии активации.
- •55. Каталитические процессы. Положительный и отрицательный катализ. Гомогенный катализ. Механизм действия катализаторов. Энергия активации каталитических реакций.
- •56. Особенности гетерогенного катализа. Его стадии.
- •57. Кислотно-основный катализ.
- •59. Поверхностная активность и её измерение. Правило Дюкло-Траубе. Ориентация молекул пав в поверхностном слое. Определение длины и площади, занимаемой молекулой в насыщенном адсорбционном слое.
- •60. Адсорбция на границе раздела фаз. Поверхностно-активные, поверхностно-инактивные и поверхностно-неактивнае вещества. Изотерма поверхностного натяжения и изотерма адсорбции.
- •61. Адсорбция на границе раздела: жидкость-газ, жидкость-жидкость. Уравнение Гиббса. Построение изотермы адсорбции.
- •62,Адсорбция на границе раздела: тв.Тело –газ и тв.Тело-жидкость. Факторы, влияющие на величину адсорбции газов и растворенных веществ. Уравнение изотермы адсорбции Френдлиха и Лэнгмюра.
- •63. Адсорбция электролитов. Эквивалентная и избирательная адсорбция сильных электролитов. Правило Панета-Фаянса.
- •64. Ионообменная адсорбция. Иониты. Классификация ионитов. Обменная емкость ионитов. Применение в фармации.
- •66. Дисперсные системы. Природа коллоидного состояния веществ. Дисперсная фаза и дисперсионная среда. Степень дисперсности. Классификация дисперсных систем по степень дисперсности.
- •68. Методы получения коллоидных растворов. Условия получения коллоидных растворов.
- •69. Очистка коллоидных систем. Диализ, электродиализ, ультрафильтрация. Вивидиализ. Аппарат «искусственная почка».
- •70. Особенности молекулярно-кинетических свойств коллоидных систем. Броуновское движение (уравнение Эйнштейна), диффузия ( уравнение Фика), осмотическое давление золей.
- •71. Оптические свойства коллоидных растворов. Опалесценция и конус Тиндаля.
- •72. Рассеяние и поглощение света. Уравнение Релея. Окраска золей. Ультрамикроскопия и электронная микроскопия коллоидных систем. Определение формы, размеров и мицеллярной массы коллоидных частиц.
- •73. Строение коллоидной частицы. Ядро, гранула, мицелла.
- •74. Механизм возникновения заряда на поверхности коллоидных частиц (избирательная адсорбция и поверхностная диссоциация труднорастворимых веществ).
- •75. Теория строения дэс. Термодинамический, диффузионный и электрокинетический потенциалы.
- •76.Влияние электролитов на величину дзета-потенциала. Явления перезарядки коллоидных частиц при добавлении индифферентного и неиндифферентного электролита.
- •77.Электрокинетические явления 1 и 2 рода.Электрофорез и электофоретические методы исследования в фармации.Измерение электрофоретической подвижности и элктрокинетического потенциала.
- •78.Электроосмос.Электроосмотический метод измерения электрокинетического потенциала.
- •79.Кинетическая и агрегативная устойчивость коллоидных систем. Факторы устойчивости.
- •80.Коагуляция.Коагуляция быстрая и медленная. Коагуляция золей электролитами. Правило Шульце-Гарди. Порог коагуляции и методы его определения.
- •82.Коагуляция золей смесями электролитов.Антагонизм,синергизм и аддитивное действие электролитов.Чередование зон коагуляции.Привыкание золей.
- •83.Стабилизация коллоидных систем. Ионная и молекулярная стабилизация. Защита золей от коагуляции с помощью высокомолекулярных веществ. Сенсибилизация
- •89.Понятие о вмв.Методы получения вмв.Клас-цияВмв.Применение вмв в фармации.
- •91.Кристаллическое и аморфное состояние вмв.Механические свойства вмв.Связь между строением и механическими свойствами полимеров.Физическоесостояние.Полимеров.
- •92.Полимерные неэлектролиты и полиэлектролиты.Полиамфолиты.Изоэлектрическая точка полиамфолитов и методы её определения.
- •93. Набухание и растворениВмв.Механизмнабухания.Влияние различных факторов на степень набухания.Лиотропные ряды ионов.
- •94.Термодинамика набухания и растворения в
- •96.Вязкость р-овВмв.Отклонение растворов от вмв от уравнений Ньютона и Паузейля.УравнениеБингама.Объяснение аномальной вязкости растворов полимеров.Асимметрия макромолекул.
- •98.Факторы устойчивости р-ов вмв и её нарушение.ВЫсаливание.Механизм выасливающего действия электролитов.Пороги высаливания.Лиотропные ряды ионов.Зависимость порогов высаливания полиамфолитов от рн.
- •99.Коацервация:простая и комплекссная.Микрокоацервация.Биологическое значение.
- •100.Микрокапсулирование.Значение фармации.
57. Кислотно-основный катализ.
Кислоты и основания во многих реакциях выполняют функции катализатора, т.е. участвуя в реакции, сами не расходуются. Различают 3 типа кислотно-основного катализа: 1) специфический кислотный (основный) катализ, при котором катализатором служат ионы Н+ или ОН- соответственно; 2) общий кислотный(основный) катализ, который осуществляется любым донором (акцептором) протона; 3) электрофильный (нуклеофильный) катализ, осуществляемый кислотами и основаниями Льюиса.
Константа скорости первого порядка k для реакции в буферном растворе может быть линейной функцией [H+], [OH-], [HA], [A-], т.е. :
K=k0 + k1 [H+] + k2 +[OH-]+k3[HA]+k4[A-]
В этом выражении k0-константа скорости первого порядка при отсутствии всех каталитических ионов: [H+], [OH-], [HA], [A-],а ki – каталитические коэффициенты.
Если существенную роль играет только член k1[H+], то говорят, что в реакции проявляется специфический катализ ионами водорода. Если преобладает член k3[HA], то реакция подвержена действию общего кислотного катализа. Если же преобладает член k4[A-], то реакция подвержена действию общего основного катализа.
Механизм каталитического действия ионов водорода состоит в том, что образуется промежуточное соединение протона и молекулы исходного вещества. За счет этого процесса разрыхляются имеющиеся в исходном веществе химические связи, снижается энергия активации, а далее протонированная форма ВН+ распадается на продукт реакции и катализатор.
58. Поверхностные явления и их значение в фармации. Свободная поверхностная энергия. Поверхностное натяжение. Методы определения поверхностного натяжения. Зависимость поверхностного натяжения от температуры и концентрации ПАВ.
Поверхностные явления – это совокупность явлений на границе раздела фаз.
Обусловлены наличием у молекул образующих границу раздела большого запаса свободной поверхностной энергии и большой величиной поверхностной энергии.
Поверхностная энергия жидких границ раздела равна произведению поверхностного натяжения на единицу площади поверхности раздела, таким образом:
dG=σ*dS, при этом, поверхностное натяжение представляет собой работу изотермического образования единицы площади поверхностного раздела фаз.
Методы определения поверхностного натяжения:
Статистические. Определяют момент наступления равновесия.
- метод капиллярного поднятия; - метод Ребиндера – это метод определения максимального давления газового пузырька; - метод взвешивания капли; - метод отрыва кольца; - метод висячей капли или неподвижной капли.
2. Динамические. Определяется величина в ходе процесса.
-метод колеблющейся струи; - метод капиллярных волн
От чего зависит поверхностное натяжение:
Природы жидкости
Температуры ( с повышением температуры поверхностное натяжение уменьшается)
От концентрации растворенных веществ
По способности вещества:
Вещества снижающие поверхностное натяжение при растворении в чист. растворителе(ПАВ)
Если поверхностное натяжение чистого растворителя больше поверхностного натяжения раствора, тогда вещество поверхностно активное(Если они способны диссоциировать в воде, то ПАВ- ионогенные).Это соли высших карбоновых кислот, аммонивые основания;
Если ПАВ не способны диссоциировать то, они неионогенные.Бывают амфолитные ПАВ (дают либо катион, либо анион).
Если поверх.натяжение чист. растворителя меньше поверх.натяжения раствора, то вещество поверх. Неактивное ПНАВ.
Если поверх.натяжение чист.растворителя равно поверх.натяжению раствора, то вещества поверхностно нейтральные.