Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
teoria.rtf
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
15.8 Mб
Скачать

1.2. Алгоритмы основанные на методе последовательного поиска.

1.2.1. Алгоритм последовательного (прямого) поиска (The Brute Force Algorithm).

Самый очевидный алгоритм. Обозначим S - слово, в котором ищется образец X. Пусть m и n - длины слов S и X соответственно. Можно сравнить со словом X все подслова S, которые начинаются с позиций 1,2,...,m-n+1 в слове S; в случае равенства выводится соответствующая позиция (Листинг 1). [1, 2]

Листинг 1

Error: Reference source not found

Очень просто, но очень неразумно. Ведь максимальное, количество сравнений будет равно O((m-n+1)*n+1), хотя большинство из них на самом деле лишние. Например, найдя строку aabc и обнаружив несоответствие в четвертом символе (совпало только aab), алгоритм будет продолжать сравнивать строку, начиная со следующего символа, хотя это однозначно не приведет к результату.

Следующий метод работает намного быстрее простейшего, но, к сожалению, накладывает некоторые ограничения на текст и искомую строку.

1.2.2. Алгоритм Рабина.

Алгоритм Рабина представляет собой модификацию линейного алгоритма; он основан на весьма простой идее, которую изложим, следуя книге [13 ,172-173].

«Представим себе, что в слове A, длина которого равна m, мы ищем образец X длины n. Вырежем "окошечко" размером n и будем двигать его по входному слову. Нас интересует, не совпадает ли слово в "окошечке" с заданным образцом. Сравнивать по буквам долго. Вместо этого фиксируем некоторую числовую функцию на словах длины n, тогда задача сведется к сравнению чисел, что, несомненно, быстрее. Если значения этой функции на слове в "окошечке" и на образце различны, то совпадения нет. Только если значения одинаковы, необходимо проверять последовательно совпадение по буквам.» (Листинг 2)

Листинг 2

Error: Reference source not found

Этот алгоритм выполняет линейный проход по строке (n шагов) и линейный проход по всему тексту (m шагов), стало быть, общее время работы есть O(n+m). При этом мы не учитываем временную сложность вычисления хеш-функции, так как, суть алгоритма в том и заключается, чтобы данная функция была настолько легко вычисляемой, что ее работа не влияла на общую работу алгоритма. Тогда, время работы алгоритма линейно зависит от размера строки и текста, стало быть программа работает быстро. Ведь вместо того, чтобы проверять каждую позицию на предмет соответствия с образцом, мы можем проверять только те, которые «напоминают» образец. Итак, для того, чтобы легко устанавливать явное несоответствие, будем использовать функцию, которая должна:

1. Легко вычисляться.

2. Как можно лучше различать несовпадающие строки.

3. hash( y[ i+1 , i+m ] ) должна легко вычисляться по hash( y[ i , i+m-1 ].

Во время поиска х будем сравнивать hash( x ) с hash( y[ i, i+m-1 ] ) для i от 0 до n-m включительно. Если обнаруживаем совпадение, то проверяем посимвольно.

Пример (удобной для вычисления функции) [13 ,172]. Заменим все буквы в слове и образце их номерами, представляющими собой целые числа. Тогда удобной функцией является сумма цифр. (При сдвиге "окошечка" нужно добавить новое число и вычесть "пропавшее".)

Однако, проблема в том, что искомая строка может быть длинной, строк в тексте тоже хватает. А так как каждой строке нужно сопоставить уникальное число, то и чисел должно быть много, а стало быть, числа будут большими (порядка D*n, где D - количество различных символов), и работать с ними будет так же неудобно. Но какой интерес работать только с короткими строками и цифрами? Разработчики алгоритма придумали, как улучшить этот алгоритм без особых потерь в скорости работы.

Пример (семейства удобных функций) [13, 172-173]. Выберем некоторое число p (желательно простое) и некоторый вычет x по модулю p. Каждое слово длины n будем рассматривать как последовательность целых чисел (заменив буквы их кодами). Эти числа будем рассматривать как коэффициенты многочлена степени n-1 и вычислим значение этого многочлена по модулю p в точке x. Это и будет одна из функций семейства (для каждой пары p и x получается своя функция). Сдвиг "окошечка" на 1 соответствует вычитанию старшего члена, умножению на x и добавлению свободного члена. Следующее соображение говорит в пользу того, что совпадения не слишком вероятны. Пусть число p фиксировано и к тому же оно является простым, а X и Y - два различных слова длины n. Тогда им соответствуют различные многочлены (мы предполагаем, что коды всех букв различны - это возможно при p, большем числа букв алфавита). Совпадение значений функции означает, что в точке x эти два различных многочлена совпадают, т.е. их разность обращается в 0. Разность есть многочлен степени n-1 и имеет не более n-1 корней. Таким образом, если n много меньше p, то случайному значению x мало шансов попасть в "неудачную" точку.

Строго говоря, время работы всего алгоритма в целом, есть O(m+n+mn/P), mn/P достаточно невелико, так что сложность работы почти линейная. Понятно, что простое число следует выбирать большим, чем больше это число, тем быстрее будет работать программа.

Алгоритм Рабина и алгоритм последовательного поиска являются алгоритмами с наименьшими трудозатратами, поэтому они годятся для использования при решении некоторого класса задач. Однако эти алгоритмы не являются наиболее оптимальными (хотя бы потому, что иногда выполняют явно бесполезную работу, о чем было сказано выше), поэтому мы перейдём к следующему классу алгоритмов. Эти алгоритмы появились в результате тщательного исследования алгоритма последовательного поиска. Исследователи хотели найти способы более полно использовать информацию, полученную во время сканирования (алгоритм прямого поиска ее просто выбрасывает). Рассмотрим алгоритм Кнута – Морриса – Пратта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]