
- •Курс "Концепции современного естествознания"
- •Лекция 1. Тема: Введение в дисциплину.
- •1. Естествознание. Определение и содержание понятия. Задачи естествознания
- •2. Взаимосвязь естественных наук. Редукционизм и холизм.
- •3. Фундаментальные и прикладные науки. Технологии
- •4. Тезис о двух культурах.
- •Лекция 2. История развития естествознания. Стадии познания природы и глобальные естественнонаучные революции
- •1. Этапы (стадии) познания природы
- •2. Глобальные естественнонаучные революции
- •Лекция 3. Методология научных исследований
- •1. Понятие методологии и метода
- •2. Методы эмпирического и теоретического познания
- •3. Формы научного знания
- •5. Критерии истинности научного знания
- •Лекция 4. Механика и методология Ньютона
- •1. Движение - одна из основных проблем естествознания
- •2. Механика Галилея как основа механики Ньютона
- •3. Механика Ньютона
- •4. Ньютоновская методология исследований
- •5. Оптика Ньютона – предвосхищение современной концепции о двойственной природе света
- •Лекция 5. Механическая картина мира (мкм)
- •1. Понятие научной картины мира
- •2. Формирование механической картины мира (мкм)
- •3. Основные понятия и законы мкм
- •4. Основные принципы мкм
- •Лекция 6. Термодинамическая картина мира (I)1. Промышленная революция и развитие теории теплоты
- •2. Работа в механике. Закон сохранения и превращения энергии в механике
- •3. Теплородная и кинетическая теория теплоты
- •4. Термодинамика и статистическая физика
- •Лекция 7. Термодинамическая картина мира (II). Второе начало термодинамики
- •3. Энтропия. Вероятностная трактовка.
- •Лекция 8. Термодинамическая картина мира (III). Стрела времени
- •1. Вероятность как атрибут больших систем.
- •2. Стрела времени
- •3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана.
- •Лекция 9. Электромагнитная картина мира (эмкм)
- •1. Основные экспериментальные законы электромагнетизма.
- •2. Теория электромагнитного поля д. Максвелла
- •3. Электронная теория Лоренца.
- •Лекция 10. Специальная теория относительности. Основные идеи общей теории относительности
- •1. Проблема равноправия инерциальных систем отсчета и мирового эфира.
- •2. Постулаты и основные следствия сто
- •3. Основные идеи общей теории относительности.
- •4. Основные понятия и принципы эмкм
- •Лекция 11. Квантово-полевая картина мира (кпкм)
- •1. Формирование идеи квантования физических величин
- •2. Корпускулярно-волновой дуализм света и вещества.
- •3. Соотношения неопределенностей Гейзенберга
- •4. Основные понятия и принципы кпкм
- •Лекция 12. Многообразие и единство мира
- •1. Структурные уровни материи
- •2. Элементарные частицы, фундаментальные частицы и частицы – переносчики фундаментальных взаимодействий
- •3. Атомное ядро
- •4. Молекулы и реакционная способность веществ.
- •5. Макроскопические тела. Фазовые переходы.
- •Лекция 13. Мегамир, основные космологические и космогонические представления (I)
- •2. Солнечная система
- •3. Гипотезы о происхождении планет Солнечной системы
- •Лекция 14. Мегамир. Основные космогонические представления (II)
- •1. Звезды, их характеристики, источники энергии
- •2. Галактики и метагалактики
- •3. Структура и геометрия Вселенной
- •Лекция 15. Мегамир, основные космогонические представления
- •1. Эволюция звезд
- •2. Возникновение Вселенной. Теория Большого Взрыва
- •3. Антропный принцип.
- •Лекция 16. Химическая эволюция Земли
- •1. Химическая эволюция Земли
- •1. Химическая эволюция Земли
- •2. Понятие самоорганизации в химии.
- •3. Общая теория химической эволюции и биогенеза
- •Теории возникновения жизни
- •Лекция 17. Специфика живого
- •1. Предмет изучения, задачи и методы биологии
- •2. Специфика и системность живого
- •Лекция 18. Термодинамика живых систем. Жизнь как информационный процесс.
- •1. Термодинамика живых систем
- •2.2 Информационные связи внутри организма
- •Лекция 19. Концепция эволюции в биологии
- •1. Эволюционная теория Дарвина – Уоллеса
3. Проблема тепловой смерти Вселенной и флуктуационная гипотеза Больцмана.
Дальнейшее развитие принципа необратимости, принципа возрастания энтропии состояло в распространении этого принципа на Вселенную в целом, что и было сделано Клаузиусом. Итак, согласно второму началу все физические процессы протекают в направлении передачи тепла от более горячих тел к менее горячим, а это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, в будущем ожидается исчезновение температурных различий и превращение всей мировой энергии в тепловую, равномерно распределенную во Вселенной. Вывод Клаузиуса был следующим:
1. Энергия мира постоянна.
2. Энтропия мира стремится к максимуму.
Таким образом, тепловая смерть Вселенной означает полное прекращение всех физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией.
Современное естествознание отвергает концепцию “тепловой смерти” применительно к Вселенной в целом. Дело в том, что Клаузиус прибегнул в своих рассуждениях к следующим экстраполяциям:
1. Вселенная рассматривается как замкнутая система.
2. Эволюция мира может быть описана как смена его состояний.
Для мира как целого состояния с максимальной энтропией имеет смысл, как и для любой конечной системы.
Правомочность этих экстраполяций весьма сомнительна, хотя связанные с ними проблемы представляют трудность и для современной физической теории.
Флуктуации. Проблему будущего развития Вселенной пытался разрешить Л. Больцман. Он так же считал Вселенную замкнутой изолированной системой, однако применил к ней понятия флуктуации.
Под флуктуацией физической величины понимается отклонение истинного значения величины от ее среднего значения, обусловленное хаотическим тепловым движением частиц системы.
Больцман рассматривал видимую часть Вселенной как небольшую область бесконечной Вселенной. Для такой области допустимы флуктуационные отклонения от равновесия, благодаря чему в целом исчезает необратимая эволюция Вселенной к хаосу и тепловой смерти.
Следует сказать, что Больцман находился под сильным влиянием теории Ч. Дарвина, называя XIX век веком Дарвина. В эволюционной теории роль флуктуаций так же велика. Ведь эволюция – это путь от случайных флуктуаций видов в сторону возрастания сложности, порядка. В то же время в физике, согласно второму началу – все наоборот, т.е. необратимость ведет к разрушению порядка. Больцман, таким образом, попытался снять это противоречие, создать теорию эволюции системы к равновесию.
Теория флуктуаций развивалась и после трагической смерти Л. Больцмана в 1906 г., в частности, в трудах Эйнштейна и Смолуховского.
В настоящее время проблема самоорганизации сложных систем рассматриваются в рамках нового междисциплинарного направления – синергетики.
Контрольные вопросы
1. Что такое большие системы в термодинамике?
2. Можно ли точно определить координаты и скорости всех молекул макроскопического тела одновременно в данный момент времени?
3. Поясните статистический закон распределения молекул по скоростям.
4. Поясните утверждение о том, что законы ньютоновской классической механики являются обратимыми.
5. Что говорят о возможности полного управления системами классическая механика и термодинамика?
6. Что, по словам И. Пригожина и И. Стенгерс описывает необратимое увеличение энтропии?
7. Для каких систем - больших или малых имеют смысл статистические законы?
8. Назовите главное свойство времени?
9. Поясните понятие «стрела времени»?
10. Что такое космологическая стрела времени?
11. Что такое термодинамическая стрела времени?
12. Что такое психологическая стрела времени?
13. Объясните понятие тепловой смерти Вселенной.
14. Что такое флуктуация?
15. В чем заключается флуктуационная гипотеза Больцмана?
Литература
1. Концепции современного естествознания./ под ред. проф. С.А. Самыгина, 2-е изд. – Ростов н/Д: «Феникс», 1999.
2. Дубнищева Т.Я.. Концепции современного естествознания. Новосибирск: Изд-во ЮКЭА, 1997.
3. Ремизов А.Н. Медицинская и биологическая физика. – М.: Высшая школа, 1999.
4. Суорц Кл.Э. Необыкновенная физика обыкновенных явлений. Т.1. - М.: Наука, 1986.
4. О человеческом времени. - «Знание-Сила», № , 2000 г.