Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вариант шпор номер три.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.63 Mб
Скачать

38. Применение метода штрафных функций при решении задач оптимизации в электроэнергетике.

Для решения задачи отыскания экстремума целевой функции F (x,y) в допустимых областях Dy и Dz рассматривается новая функция , которая в отличие от F(x,у) определена в пространстве зависимых переменных при и (где рассматриваются в виде переменных, зависимых от x и у). Это свойство новой функции и достигается за счет введения штрафных функций Ш(y) и Ш(z), подчиняющихся условиям:

.

Эти условия означают следующее: если взята некоторая точка хk так, что соответствующие ей зависимые переменные yk и zk удо­влетворяют ограничениям и , то штраф равен нулю, в противном случае накладывается штраф в виде некоторой поло­жительной добавки к исходной функции F(x,у). Чем существен­ней отклонение от допустимой области, тем больше величина штра­фа. А так как методы возможных направлений в этом случае основываются на построении такой траектории х°, х1,..., хk, в кото­рой Wk<Wk-1, то при надлежащем выборе функции штрафа дви­жение всегда будет происходить в сторону допустимой области.

Штрафные функции должны удовлетворять двум условиям: 1) при их использовании не должны появляться новые локальные минимумы и абсолютный минимум функции W должен совпадать с относительным минимумом исходной целевой функции или быть достаточно близким ему; 2) функция штрафа должна возрастать при увеличении степени нарушения ограничения. Способ задания квадратичной штрафной функции вида , где , – величины, характеризующие степень нарушения со­ответствующих ограничений. Коэффициенты штрафа и имеют смысл коэффициентов приведения штрафа к размерности целевой функции. Выбор коэффициента штрафа существенно влияет на сходимость итерационного процесса и точность отыскания минимума целевой функции. Чем больше величина , тем круче растет функция W вне области D и тем заметнее функция W приобретает свойства «овражности». Чаще всего при овражных функциях удо­влетворительная сходимость не обеспечивается. Коэффициент штрафа влияет и на траекторию спуска.

39. 40. 41.42 Оптимизация режима электроэнергетической системы методом Ньютона. 40. Матрица Гессе. 41. Геометрическая интерпритация аппроксимации целевой фун-ии.

Преимущество метода Ньютона заключается в том, что количество итерационных ша­гов невелико. Как и во всяком итерационном мето­де, расчет начинается с задания некоторой исходной точки , для ко­торой можно вычислить значение функции . Аппроксимируем в точке зависимость f(x) некоторой другой функцией пу­тем разложения в ряд f(x) и сохранения членов, содержащих вто­рые производные: (1).

Т акая аппроксимация соответствует замене исходной функции f(x) параболой , совпадающей в точке по значениям первой и второй производных (рис. 5-10). Если обозначить через величи­ну отклонения от , то вместо (1) можно записать (2).

Найдем такое значение приращения , которое обращает в мини­мум . Для этого приравняем нулю производную от (2): , откуда . Следовательно, точку экстремума можно найти из условия .

Если в этой точке производная существенно отличается от нуля, то эту точку следует рассматривать как исходную и повто­рить вычисления. В общем виде рекуррентное выражение итера­ционного процесса можно представить как .

Таким образом, суть метода заключается в том, что исходная функция заменяется полиномом второй степени – параболой – и затем отыскивается ее минимум. В новой точке аппроксимация повторяется, отыскивает­ся ее минимум и т. д.