
- •1.1 Понятие оптимизации. Основные задачи оптимизации в электроэнергетике. Степени свободы электроэнергетической системы. Допустимый и оптимальный режимы
- •1.2 Понятие оптимизации. Основные задачи оптимизации в электроэнергетике. Степени свободы электроэнергетической системы. Допустимый и оптимальный режимы
- •2 Применение метода множителей Лагранжа при решении задач оптимизации в электроэнергетике
- •3.1 Оптимальное распределение перетоков мощности в замкнутых контурах электрической сети
- •3.2 Оптимальное распределение перетоков мощности в замкнутых контурах электрической сети
- •4.1 Применение метода множителей Лагранжа для оптимизации перетоков мощности в электрической сети
- •4.2 Применение метода множителей Лагранжа для оптимизации перетоков мощности в электрической сети
- •5.1 Оптимизация распределения перетоков мощности сложной электрической сети
- •5.2 Оптимизация распределения перетоков мощности сложной электрической сети
- •6.1 Определение оптимального распределения нагрузки между тэс методом множителей Лагранжа. Относительные приросты тэс
- •6.2 Определение оптимального распределения нагрузки между тэс методом множителей Лагранжа. Относительные приросты тэс
- •7.1 Определение оптимального распределения нагрузки методом множителей Лагранжа. Структурная схема алгоритма
- •7.2 Определение оптимального распределения нагрузки методом множителей Лагранжа. Структурная схема алгоритма
- •8 Наивыгоднейшее распределение нагрузки между тэс без учета потерь активной мощности. Физический смысл равенства относительных приростов
- •9.1 Определение оптимального распределение нагрузки в энергосистеме с гэс и тэс методом множителей Лагранжа
- •9.2 Определение оптимального распределение нагрузки в энергосистеме с гэс и тэс методом множителей Лагранжа
- •10.1 Размерность и физический смысл множителей Лагранжа в задачах оптимизации распределения нагрузки в энергосистеме
- •1 0.2 Размерность и физический смысл множителей Лагранжа в задачах оптимизации распределения нагрузки в энергосистеме
- •11.1 Опт. Распред-ие нагрузки при постоянном напоре гэс и структурная схема алгоритма поиска данного распределения
- •11.2 Опт. Распред-ие нагрузки при постоянном напоре гэс и структурная схема алгоритма поиска данного распределения
- •11.3 Опт. Распред-ие нагрузки при постоянном напоре гэс и структурная схема алгоритма поиска данного распределения
- •1 2.1 Оптимальное распределение нагрузки при переменном напоре гэс
- •12.2 Оптимальное распределение нагрузки при переменном напоре гэс
- •13.1 Оптимальное распределение нагрузки между агрегатами электростанций. Оптимальная последовательность включения агрегатов электростанций
- •13.2 Оптимальное распределение нагрузки между агрегатами электростанций. Оптимальная последовательность включения
- •14.1 Формулировка задачи оптимизации режима энергосистемы с позиций нелинейного программирования. Основные определения
- •14.2 Формулировка задачи оптимизации режима энергосистемы с позиций нелинейного программирования. Основные определения
- •15.1 Применение методов возможных направлений для поиска экстремума целевой функции при решении задач оптимизации в электроэнергетике
- •15.2 Применение методов возможных направлений для поиска экстремума целевой функции при решении задач оптимизации в электроэнергетике
- •16 Применение метода наискорейшего спуска при решении задач оптимизации в электроэнергетике
- •17 Способ вычисления оптимальной длины шага вдоль заданного направления спуска при решении задач оптимизации в электроэнергетике
- •18 Применение метода покоординатной оптимизации в электроэнергетике. Внешний и внутренний циклы метода
- •19.1 Применение градиентных методов оптимизации в электроэнергетике. Критерии сходимости. Градиентный метод в сочетании с методом наискорейшего спуска
- •19.2 Применение градиентных методов оптимизации в электроэнергетике. Критерии сходимости. Градиентный метод в сочетании с методом наискорейшего спуска
- •20.1 Применение градиентных методов оптимизации в электроэнергетике. Метод проектирования градиента
- •20.2 Применение градиентных методов оптимизации в электроэнергетике. Метод проектирования градиента
- •21.1 Учет ограничений в форме равенств при решении задач оптимизации в электроэнергетике. Приведенный градиент
- •21.2 Учет ограничений в форме равенств при решении задач оптимизации в электроэнергетике. Приведенный градиент
- •22.1 Учет ограничений в форме неравенств при решении задач опт-ии в электроэнергетике. Метод штрафных функций
- •22.2 Учет ограничений в форме неравенств при решении задач опт-ии в электроэнергетике. Метод штрафных функций
- •23.1 Оптимизация режима электроэнергетической системы методом Ньютона. Матрица Гессе
- •23.2 Оптимизация режима электроэнергетической системы методом Ньютона. Матрица Гессе
- •24.1 Комплексная оптимизация режимов энергосистемы
- •24.2 Комплексная оптимизация режимов энергосистемы
- •1. Уравнение цели .
23.2 Оптимизация режима электроэнергетической системы методом Ньютона. Матрица Гессе
(4).
Решая
эту систему относительно
и
(5), находим
точку экстремума, а следовательно, и
точку нового приближения х1:
(6).
Геом-я интерпретация рассмотренного случая представлена на рис. 5-11. Истинная зависимость F(x) заменена параболоидом , линии равного уровня которого в проекции на плоскость осей x1 и х2 - эллипсы. Решение системы (4) позволяет найти центр эллипсов х1, а затем в этой точке повторить аппроксимацию и найти точку х2 и т. д.
Выражения
(3–6) соответствуют общему случаю
минимизации функции многих переменных
F(x).
В
векторно – матричной форме эти выражения
приобретают вид
;
Функция
позволяет найти приближенное значение
исходной функции F(x)
и совпадает с ней лишь в точке разложения
х°. В первом из этих выражений второй и
третий члены – скалярные произведения
векторов, отделенных друг от друга
запятой. Через [G(x)]
обозначена матрица вторых частных
производных:
,
называемая
матрицей
Гессе.
Эта
матрица всегда симметрична. Вектор
F'(x)
есть вектор первых частных производных
целевой функции и, следовательно, это
есть градиент
.
24.1 Комплексная оптимизация режимов энергосистемы
В общем случае для получения решения приходится применять современные методы нелинейного программирования. Рассмотрим применение для этой задачи метода приведенного градиента.
Любая
задача нелинейного математического
программирования может быть записана
в следующей форме. Имеется функция
многих переменных
.
Компоненты
Z
являются искомыми параметрами режима,
a
D
включает
известную исходную информацию о состоянии
системы, тогда min
F(Z,
D)
совпадает
с min
F(Z).
Необходимо
по Z
минимизировать функцию
при
ограничениях
.
При
использовании метода приведенного
градиента компоненты вектора параметров
режима системы Z
разделяются
на два подмножества X
и
Y:
Y
включает
независимые переменные, т. е. те
параметры, которые в системе могут
регулироваться, на которые можно
воздействовать, используя определенные
средства управления; X
включает
зависимые параметры режима, т. е. те,
которые могут быть вычислены по
параметру Y,
тогда
,
отсюда
,
а ограничения принимают вид:
Связи между независимыми Y и зависимыми X переменными, как правило, неявные. Поэтому задача минимизации функции (6-G7) решается по многошаговой схеме.
Деление параметров режима Z на два подмножества X и Y понижает размерность задачи и, следовательно, облегчает вычислительный процесс. Действительно, если Z имеет n переменных, а X имеет m переменных, то обычно размерность задачи p<<n.
Рассмотрим
основные положения решения задачи
комплексной оптимизации методом
приведенного градиента. ЭС состоит
из i
= 1,
2, ..., М
обобщенных
и отдельных узлов и имеются только
тепловые станции. Параметры режима:
,
– активные и реактивные мощности
генераторных узлов;
,
– модули напряжений и фазовые углы в
узлах системы. Известны активные и
реактивные нагрузки в узлах, причем они
не зависят от напряжений и частоты
системы. Требуется определить оптимальное
распределение нагрузки по условию
минимума расхода условного топлива
системы.