Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Office Word (24).docx
Скачиваний:
0
Добавлен:
22.01.2020
Размер:
85.98 Кб
Скачать

32. фидер — линия, предназначенная для передачи электроэнергии от распределительного устройства (щита) к распределительному пункту, магистрали или отдельному электроприемнику;

Главные потребители получают питание по отдельным независимым фидерам непосредственно от ГРЩ.

Недостатки - повышенный расход кабеля и увеличение монтажных работ.

Преимущества – высокая надёжность, независимость приёмников друг от друга, что обеспечивает бесперебойную работу других электроприёмников, если какой-нибудь выйдет из строя.

Фидерная система обеспечивает безопасность и надёжность питания.

33.магистраль — линия, предназначенная для передачи электроэнергии нескольким распределительным пунктам или электроприемникам, присоединенным к ней в разных точках,\

Магистральные схемы электроснабжения применяются в следующих случаях:

-когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции

- когда нагрузка имеет распределенный характер с той или иной степенью равномерности

При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках, при радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем. 

  • 34. амперметры — для измерения силы электрического тока;

  • вольтметры — для измерения электрического напряжения;

  • омметры — для измерения электрического сопротивления;

  • мультиметры (иначе тестеры, авометры) — комбинированные приборы

  • частотомеры — для измерения частоты колебаний электрического тока;

  • ваттметры и варметры — для измерения мощности электрического тока;

  • электрические счётчики — для измерения потреблённой электроэнергии

 Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.\ Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности. Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

35. Приборы магнитоэлектрической системы

Принцип работы магнитоэлектрической системы измерительного прибора состоит во взаимодействии магнитного поля, которое создаёт постоянный магнит, с током в обмотке подвижной части, представляющая собой беглую рамку с обмоткой. С нитями (растяжками) соединены выводы обмотки, через них обмотка совмещена с внешней электрической цепью. Указательная стрелка укреплена на нити, в дальнейшем она перемещается при повороте рамки, которая с обмоткой находятся в воздушном зазоре между полюсных наконечников и сердечником, изготовленным из стали. Магнитное поле в данном воздушном зазоре однородное за счёт конструкции, а также взаимному расположению магнитной части прибора, состоящего из магнитопровода, постоянного магнита, сердечника и полюсных наконечников. В конечном итоге взаимодействия магнитного поля постоянного магнита с магнитным полем, создаваемым током и идущим по обмотке рамки, на рамку действует пара сил. Обе эти силы прямо пропорциональны силе тока

что угол поворота подвижной части механизма, а как мы понимаем и указательной стрелки, прямо пропорционален силе тока, идущего по обмотке рамки. Значит представленный механизм в полной мере можно использовать для устройства амперметра, шкала которого равномерная. Для данного прибора сопротивление обмотки – величина постоянная, то угол поворота стрелки прямо пропорционален приложенному к обмотке рамки напряжению. Следовательно, этим механизмом можно пользоваться и для устройств вольтметра. 

Главные достоинства приборов магнитоэлектрической системы: равномерность шкалы, высокая точность. Недостатками этого прибора являются невозможность произвести замеры одним и тем же прибором переменные и постоянные токи. Если же в приборе отсутствует выпрямительное устройство – относительно высокая стоимость приборов.

 в которых вращающий момент рамки с указателем создается взаимодействием между полем постоянного магнита и одним или несколькими проводниками (на рамке) с током. К достоинствам данной системы следует отнести высокую чувствительность и точность, равномерную шкалу, относительно небольшое влияние внешних полей. К недостаткам — невозможность измерения в цепях с переменным током без дополнительных устройств и чувствительность к перегрузкам.

36. Ферродинамические измерительные приборы более редки, чем электродинамические, хотя принцип работы у них схож. Отличие заключается в том, что для увеличения чувствительности ферродинамические механизмы содержит магнитопровод из магнитно-мягкого материала. Наличие магнитопровода значительно увеличивает магнитное поле в рабочем зазоре и при этом возрастает вращающий момент. 

    Неподвижная катушка размещается на полюсах ферромагнитного сердечника , а подвижная  поворачивается так же, как и в приборах магнитоэлектрической системы,- в воздушном зазоре между полюсами и неподвижным цилиндрическим сердечником 

   При такой конструкции приборы защищены от влияния внешних магнитных полей. Кроме того, увеличиваются магнитные потоки, создаваемые катушками, и возрастает вращающий момент, действующий на подвижную систему.

   Ферродинамические приборы используют в качестве щитовых амперметров, ваттметров и вольтметров, работающих в условиях тряски и вибраций, когда необходим большой коэффициент добротности (например, в авиации или на электрическом подвижном составе переменного тока).

   Кроме того, их применяют в качестве самопишущих приборов, так как они имеют значительный вращающий момент, преодолевающий трение в записывающих устройствах.

   Ферродинамическим ИМ свойственны также хорошая защита от влияния внешних магнитных полей, возможность использования магнитоиндукционного успокоения без применения специальных мер защиты от влияния поля магнита успокоителя (что требуется для электродинамических приборов) и некоторые другие особенности.

   Вследствие нелинейности кривой намагничивания, наличия гистерезиса и других явлений, присущих магнитным материалам, возрастают основная и некоторые дополнительные погрешности. Поэтому ферродинамические приборы, как правило, выпускают не выше класса точности 0,5 и только в редких случаях - класса точности 0,2.

   Рабочая частота для ферродинамических приборов обычно 50 или 400 Гц. Допустимые отклонения значения частоты, при которых прибор остается в указанном классе точности, составляют не более 10-20% от ее номинального значения.

-Дизайн прибора выполнен в истинно военном стиле. Предельная лаконичность шкалы, никаких делений. Строгий матовый черный цвет, светящийся фосфор на шкале и стрелке

Приборы ферродинамической системы применяются для измерения постоянных токов и напряжений очень редко из-за низкой точности и большой потребляемой мощности. Приборы ферродинамической системы вследствие больших потерь на перемагничивание и вихревые токи в магнитопроводе применяются лишь в качестве промышленных частотомеров и ваттметров. Кроме того, большой крутящий момент, который можно получить от ферродинамических измерительных механизмов, позволяет использовать их в самопишущих приборах.

37. Индукционные приборы состоят из индукционного измерительного механизма с отсчетным устройством и измерительной схемой. Принцип действия индукционных измерительных механизмов основан на взаимодействии магнитных потоков электромагнитов и вихревых токов, индуктированных магнитными потоками в подвижной части, выполненной в виде алюминиевого диска. В настоящее время из индукционных приборов находят применение счетчики электрической энергии в цепях переменного тока. На подвижную часть счетчика (алюминиевый диск) действует тормозной момент, пропорциональный частоте вращения диска. Этот момент создается в результате действия тока, наводимого во вращающемся между полюсами постоянного магнита диске, и определяется выражением

Индукционные приборы применяются только при переменном токе в качестве ваттметров и счетчиков электрической энергии (реже амперметров и вольтметров). Ознакомимся с теорией индукционных приборов. Следует отметить, что в настоящее время индукционные ваттметры заводами электроизмерительных приборов не выпускаются. Они заменены, ферро-динамичеокими ваттметрами, удовлетворяющими требованиям ГОСТ; показания последних меньше зависят от температуры и частоты.

-Индукционные приборы делятся на две группы: приборы с бегущим и приборы с вращающиУспокоение прибора осуществляется за счет вихревых токов, индуктируемых в верхних частях алюминиевого цилиндра п-ри движении его в поле двух постоянных магнитовмся магнитным полем.

-Достоинствами индукционных приборов являются также прочность конструкции, стойкость к перегрузкам, надежность в работе. Недостатками индукционных приборов являются: пригодность их только для переменного тока, неравномерность шкалы, зависимость показаний от температуры и частоты, малая точность (1,0—1,5%). Расход мощности в индукционных приборах составляет 2—4 Вт.

38.(

39. 40Судовые кабели и провода, проводящие электроэнергию на судне от источников к потребителям, изготовляют из мягкой медной проволоки, изоляция жилы которой может быть различной: из резины, поливинилхлорида и других пластмасс, лакоткани и минеральных изоляционных материалов с оболочкой из свинца, трудносгораемой резины и т. п. Кроме того, кабели должны иметь броню, защитную панцирную оплетку из стальной оцинкованной проволоки или других стойких материалов для защиты от механических повреждений (одновременно служащую и экраном от радиопомех). В отсеках и судовых помещениях кабель прокладывается по специальным мостам, панелям и кассетам, а на открытых участках — по газовым трубам или защищается металлическими кожухами.  При прохождении кабеля через водонепроницаемые переборки и палубы ставятся специальные переборочные или палубные кабельные коробки или сальники, которые по наружной поверхности привариваются к переборкам или палубам. Внутри для уплотнения пространства между кабелем и стенками кабельные коробки заполняются специальными массами.  Выбор марки кабеля или провода для судовых сетей зависит от их назначения и вида помещений, в которых они прокладываются. 

Сечение кабеля - это площадь токопроводящей жилы на срезе. Сечение круглой токопроводящей жилы кабеля рассчитывается по формуле площади круга = π × r2, где число π=3,14, а r - радиус. Если в жиле несколько проволочек - то сечение жилы будет равно сумме сечений всех проволочек. Радиус проволочки измеряется штангенциркулем, а очень тонких проволочек - микрометром.

Однозначно лучше в двойной изоляции. Достаточно сказать, что кабель в одинарной изоляции имеет срок службы до 15 лет, а в двойной изоляции - 30 лет. В технической литературе принято разделять термины изоляция и оболочка. Изоляция - это слой диэлектрического материала, накладываемого на токоведущую жилу, а оболочка - это все слои поверх изоляции. Оболочка служит для защиты кабеля от механических, химических, тепловых и пр. воздействий.

У кабеля может быть несколько слоев оболочки из различных видов материала: от стали до стеклоткани. Вот некоторые виды оболочки, которые могут Вам пригодиться:

  • термостойкие кабеля для прокладки в горячих помещениях как, например, в сауне. Как правило применяется материал фторопласт, а сверху стеклотнкань. Специальных обозначений для таких кабелей нет, т.е. при необходимости надо обращаться к справочникам или каталогам, где показатель температура эксплуатации указывается обязательно;

  • не поддерживающие горение с маркировкой "нг" - означает способность самозатухать при пропадании огня, но не выдерживать высокие температуры !!!. Не путайте с термостойкими и огнестойкими кабелями;

  • если в марке кабеля есть обозначения FR (огнестойкий) и затем E30, E90 или E120 - то данный кабель может "работать" в открытом пламени соответственно в течение 30, 90 или 120 мин. ;

  • кабеля с полиэтиленовой оболочкой можно прокладывать как в грунте, так и отрытым способом, например, по стенам зданий;

  • кабеля с изоляцией и оболочкой из ПВХ (поливинилхлорид) предназначены для проводки внутри помещений (под штукатуркой) или в кабельных каналах.

41.