Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Инжинерная психология лаба.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
165.57 Кб
Скачать

1 Время простой реакции

Для определения оптимальной величины интервала h используют формулу Стерджеса:

h = ,

где ВПРmax, ВПРmin-максимальное и минимальное значение времени простой реакции в исследуемом вариационном ряду, с.;

N- общее число наблюдений. N=29.

h = = =0,028 с.

h = 0,03 c.

Vср = 0,2377 сек ;

Построение интервального вариационного ряда.

Таблица 2

Границы интервалов, с.

Середины интервалов Vci, с.

Опытные частоты, mi*

Опытные частости, Pi*

Накопленные частости, F(v)

mi* *Vci,

mi* *V2ci,

(Vci, - Vср)3 * Pi*

(Vci, - Vср)4 * Pi*

0,145-0,175

0,16

1

0,034

0,034

0,16

0,0256

-0,000016

0,0000012

0,175-0,205

0,19

5

0,172

0,206

0,95

0,1805

-0,000019

0,0000009

0,205-0,235

0,22

9

0,31

0,516

1,98

0,4356

-0,000002

0,00000004

0,235-0,265

0,25

6

0,207

0,723

1,5

0,375

0,0000004

0,00000000

0,265-0,295

0,28

7

0,241

0,964

1,96

0,5488

0,000018

0,0000008

0,295-0,325

0,31

0

0

0,964

0

0

0

0

0,325-0,355

0,34

1

0,034

1

0,34

0,1156

0,000036

0,0000037

Сумма

-

29

1

-

6,89

1,6811

0,0000174

0,00000664

Рисунок 1- Интервалы ВПР

Красным цветом обозначен интервал, в который входит значение ВПР студента.

Из графика видно, что данное распределение близко к нормальному.

Рассчитаем статистические параметры:

Математическое ожидание:

=

впр = = = 0,2376 сек;

Статическая дисперсия:

(V) = - ;

(V)впр= - = - = 0,00147;

Несмещенная оценка дисперсии:

D(V) = * (V)впр;

D(V)впр = *0,00147 = 0,00152;

Стандартное среднеквадратическое отклонение:

= ;

= = 0,039 сек;

Коэффициент вариации:

ν= *100% ;

νвпр= * 100% =16,4%;

Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднеарифметического:

Чем больше значение коэффициента вариации, тем относительно больший разброс и меньшая выравненность исследуемых значений. Если коэффициент вариации меньше 10%, то изменчивость вариационного ряда принято считать незначительной, от 10% до 20% относится к средней, больше 20% и меньше 33% к значительной и если коэффициент вариации превышает 33%, то это говорит о неоднородности информации и необходимости исключения самых больших и самых маленьких значений.

В данном случае коэффициент вариации менее 33%, следовательно это говорит о однородности информации.

Ассиметрия:

= * ;

Asвпр = *0,0000174= 0,29 ;

Если распределение симметрично относительно средней то показатель

асимметрии равен нулю.

Если показатель асимметрии больше 0,то наблюдается правосторонняя асимметрия. Если же показатель асимметрии меньше 0, налицо левосторонняя асимметрия.

В данном случае видно, что распределение правосторонее.

Эксцесс:

EK= *Pi – 3 ;

EKвпр = * 0,00000664– 3 = -0,13 ;

Показатель эксцесса характеризует степень колеблемости исходных данных.

Он показывает, насколько острую вершину имеет плотность вероятности по сравнению с нормальным распределением. Если коэффициент эксцесса больше нуля, то распределение имеет более острую вершину, если меньше нуля, то более плоскую.

Данный график распределения имеет более плоскую вершину.