Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
20-27_30-39.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
109.57 Кб
Скачать

32.Усадка и ползучесть бетона, релаксация напряжений

В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становиться внутренней связью, препятствующей свободной усадке бетона. Согласно опытным данным, усадка и набухание железобетона в ряде случаев вдвое меньше, чем усадка и набухание бетона. Стесненная деформация усадки бетона приводит к появлению в железобетонном элементе начальных, внутренне уравновешенных напряжений - растягивающих в бетоне и сжимающих в арматуре. Под влиянием разности деформаций свободной усадки бетонного элемента и стесненной усадки армированного элемента возникают средние растягивающие напряжения в бетоне. Наибольшие значения этих напряжений находятся в зоне контакта с арматурой.

При усадке железобетона растягивающие напряжения в бетоне зависят от свободной усадки бетона, коэффициента армирования, класса бетона. С увеличением содержания арматуры в бетоне растягивающие напряжения увеличиваются.

В статически неопределимых железобетонных конструкциях лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для того чтобы уменьшить дополнительные усилия от усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки.

Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становиться внутренней связью, препятствующей свободным деформациям ползучести. В железобетонном элементе под нагрузкой стесненная ползучесть приводит к перераспределению усилий между арматурой и бетоном. Этот процесс интенсивно протекает в течение первых нескольких месяцев, а затем в течение длительного времени (более года) постепенно затухает.

На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения.

Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции.

Релаксация- уменьшение напряжений в течении времени без начальной деформации.

33. Прочность бетона, факторы влияющие на прочность.Классы бетона.

Прочность бетона - свойство материала воспринимать, не разрушаясь, различные виды нагрузок и воздействий.

Внешняя нагрузка создаёт в бетоне сложное напряжённое состояние , обусловленное его структурой ,наличием в теле пор, пустот различной прочностью и деформативностью цементного камня и заполнителя.

Вокруг пор происходит концентрация напряжений, при чём в направлении перпендикулярно действию сжимающих сил возникают растягивающие напряжения.

При определённой величине нагрузки, преодаливается сопротивление материала растяжению и происходит разрыв бетона

Прочность бетона на осевое сжатие fc максимальные сжимающие напряжения в бетоне при одноосном напряженном состоянии, соответствующие пиковой точке диаграммы деформирования.

Прочность бетона на осевое сжатие, гарантированная fc,Gcube прочность, определяемая при осевом сжатии кубов размером 150150150 мм с учетом статистической изменчивости при обеспеченности 0,95, гарантируемая производителем в соответствии с действующими стандартами.

Класс бетона по прочности количественная величина, характеризующая качество бетона, соответствующая его гарантированной прочности на осевое сжатие, обозначаемая буквой С и числами, выражающими значения нормативного сопротивления и гарантированной прочности в Н/мм2 (МПа), например, С12/15 (перед чертой — значение нормативного сопротивления fck, Н/мм2, после черты — гарантированная прочность бетона fс,Gcube, Н/мм2).

Классы бетона по прочности на сжатие, соответствующие им нормативные и расчетные сопротивления

При проектировании бетонных, железобетонных и предварительно напряженных конструкций следует применять конструкционные бетоны следующих классов по прочности на сжатие:

а) тяжелые, в том числе напрягающие: С8/10; С12/15; С16/20; С20/25; С25/30; С30/37; С35/45; С40/50; С45/55; С50/60; С60/70; С70/85; С80/95; С90/105; С100/115;

б) мелкозернистые:

— группы А (естественного твердения или подвергнутые тепловой обработке при атмосферном давлении на песке с модулем упругости св. 2,0): С8/10; С12/15; С16/20; С20/25; С25/30; С30/37; С35/45;

— группы Б (то же, с модулем крупности 2,0 и менее): С8/10; С12/15; С16/20; С20/25; С25/30.

34. НОРМАТИВНЫЕ И РАСЧЁТНЫЕ ХАРАКТЕРИСТИКИ БЕТОНА, КОЭФИЦИЕНТЫ.

Прочность на сжатие является важнейшим классификационным показателем, характеризующим технические свойства бетона, как строительного материала. Нормативные документы определяют прочность бетона на сжатие fс, как максимальное сжимающее напряжение в бетоне при одноосном напряженном состоянии. Среднее значение прочности, получаемое по результатам испытаний серии опытных образцов, обозначают fсm.

- нормативное сопротивление бетона сжатию (fck) – контролируемая прочностная характеристика бетона, определяемая с учетом статистической изменчивости. В качестве базового числового значения обеспеченности нормативных значений прочностных характеристик принимается величина 0,95.

- расчетная прочность бетона или его расчетное сопротивление, которое определяют как величину, получаемую в результате деления нормативного сопротивления fсk на коэффициент безопасности для бетона gс.

gс=1,8 для неармированных конструкций

gс=1,5 для ж.б.к и предварительно напряжённых

gс=1,0 при расчёте по 2 группе предельного состояния

Коэффициент безопасности для бетона частный с — коэффициент, учитывающий возможность отклонения прочностей бетона fck, fctk ниже нормативных значений, отклонения в геометрических размерах сечений (не превышающие, однако, допустимых) и разницу между прочностью бетона, определяемую на опытных образцах, и прочностью бетона в конструкции; в случае неармированных конструкций значение с учитывает возможность наступления хрупкого разрушения